精英家教网 > 高中数学 > 题目详情
4.下列关系中正确的个数为(  )
①0∈{0}
②Φ?{0}
③{0,1}⊆{(0,1)}.
A.0B.1C.2D.3

分析 由空集的性质、元素和集合和集合和集合的关系,即可判断.

解答 解:①0∈{0}正确;
②Φ?{0},由空集是非空集合的真子集,故正确;
③{0,1}⊆{(0,1)},错误,一个为数集,一个为点集.
正确的个数为2.
故选:C.

点评 本题考查空集的性质、元素和集合和集合和集合的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′∉平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列说法,不正确的是(  )
A.平面A′FG⊥平面ABC
B.BC∥平面A′DE
C.三棱锥A′-DEF的体积最大值为$\frac{1}{64}{a^3}$
D.直线DF与直线A′E有可能异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题p:?x0∈R,x0≤2的否定是(  )
A.¬p:?x∈R,x≤2B.¬p:?x∈R,x>2C.¬p:?x∈R,x>2D.¬p:?x∈R,x≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果直线y=kx-1与双曲线x2-y2=4的右支有两个公共点,求k的取值范围(  )
A.1<k<$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$C.-$\frac{\sqrt{5}}{2}$<k<-1D.-$\frac{\sqrt{5}}{2}$<k<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义运算a⊕b=$\left\{\begin{array}{l}a\begin{array}{l}{\;},{a<b}\end{array}\\ b\begin{array}{l}{\;},{a≥b}\end{array}\end{array}$若函数f(x)=2x⊕2-x,则f(x)的值域是(  )
A.[1,+∞)B.(0,+∞)C.(0,1]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数 y=x2+x(-1≤x≤3}的值域是(  )
A.[0,12]B.[-$\frac{1}{4}$,12]C.[-$\frac{1}{2}$,12]D.[$\frac{3}{4}$,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是(  )
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; 
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.
A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.以$A(-\sqrt{3},0)$为圆心,4为半径作圆,$B(\sqrt{3},0)$,C为圆上任意一点,分别连接AC,BC,过BC的中点N作BC的垂线,交AC于点M,当点C在圆上运动时,
(1)求M点的轨迹方程,并说明它是何种曲线;
(2)求直线y=kx+1截(1)所得曲线弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0)
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)当q=2时,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案