【题目】数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:
中学 | 甲 | 乙 | 丙 | 丁 |
人数 | 30 | 40 | 20 | 10 |
为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.
【答案】解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名, 抽取的样本容量与总体个数的比值为 ,
所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3.
(Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A,
从30名学生中随机抽取两名学生的取法共有 种,
来自同一所中学的取法共有 .
所以 .
答:从30名学生中随机抽取两名学生来自同一所中学的概率为 .
(Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.
依题意得,X的可能取值为0,1,2,
,
,
.
所以X的分布列为:
X | 0 | 1 | 2 |
P |
|
|
|
【解析】(Ⅰ)四所中学报名参加数独比赛的学生总人数为100名,抽取的样本容量与总体个数的比值 ,由此能求出甲、乙、丙、丁四所中学各抽取的学生人数.(Ⅱ)从30名学生中随机抽取两名学生的取法共有 种,来自同一所中学的取法共有 ,由此能求出从30名学生中随机抽取两名学生来自同一所中学的概率. (Ⅲ)依题意得,X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列.
【考点精析】解答此题的关键在于理解分层抽样的相关知识,掌握先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本,以及对离散型随机变量及其分布列的理解,了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】一个容量为M的样本数据,其频率分布表如下.
(1)计算a,b的值;
(2)画出频率分布直方图;
(3)用频率分布直方图,求出总体的众数及平均数的估计值.
频率分布表
分组 | 频数 | 频率 | 频率/组距 |
(10,20] | 2 | 0.10 | 0.010 |
(20,30] | 3 | 0.15 | 0.015 |
(30,40] | 4 | 0.20 | 0.020 |
(40,50] | a | b | 0.025 |
(50,60] | 4 | 0.20 | 0.020 |
(60, 70] | 2 | 0.10 | 0.010 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的一段图象如图所示:将的图象向右平移()个单位,可得到函数的图象,且图象关于原点对称.(1)求的值.
(2)求 的最小值,并写出的表达式.
(3)设t>0,关于x的函数在区间上最小值为-2,求t的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( , ),求cos(α﹣ )的值;
(2)设函数f(α)=sinα( ),求f(α)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.
(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;
(2)求四边形OPDC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某公园有三条观光大道AB,BC,AC围成直角三角形,其中直角边BC=200m,斜边AB=400m,现有甲、乙、丙三位小朋友分别在AB,BC,AC大道上嬉戏,所在位置分别记为点D,E,F.
(1)若甲、乙都以每分钟100m的速度从点B出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;
(2)设∠CEF=θ,乙丙之间的距离是甲乙之间距离的2倍,且∠DEF= ,请将甲乙之间的距离y表示为θ的函数,并求甲乙之间的最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com