精英家教网 > 高中数学 > 题目详情
8.解下列三角方程:
(1)方程sinx+$\sqrt{3}$cosx=0在x∈[0,π]上的解为$\frac{2π}{3}$;
(2)cos2x-sin2x=$-\frac{1}{2}$;
(3)tan(x-$\frac{π}{3}$)=2sin$\frac{π}{3}$,在区间(-2π,2π)内的解.

分析 (1)由已有可得tanx=-$\sqrt{3}$,又由x∈[0,π],可得答案;
(2)由已知可得cos2x=$-\frac{1}{2}$,结合特殊角的余弦函数,可得答案;
(3)由已知可得tanx=-$\sqrt{3}$,结合x∈(-2π,2π),可得答案.

解答 解:(1)若sinx+$\sqrt{3}$cosx=0,则sinx=-$\sqrt{3}$cosx,
则tanx=-$\sqrt{3}$,
又∵x∈[0,π],
故x=$\frac{2π}{3}$;
(2)cos2x-sin2x=cos2x=$-\frac{1}{2}$,
则2x=$\frac{2π}{3}$+2kπ,或2x=$\frac{4π}{3}$+2kπ,k∈Z,
解得:x=$\frac{π}{3}$+kπ,或x=$\frac{2π}{3}$+kπ,k∈Z,
(3)tan(x-$\frac{π}{3}$)=$\frac{tanx-\sqrt{3}}{1+\sqrt{3}tanx}$=2sin$\frac{π}{3}$=$\sqrt{3}$,
解得:tanx=-$\sqrt{3}$,
又由x∈(-2π,2π),
故x=$-\frac{4π}{3}$,或x=$-\frac{π}{3}$,或x=$\frac{2π}{3}$,或x=$\frac{5π}{3}$,
故答案为:$\frac{2π}{3}$.

点评 本题考查的知识点是三角函数的化简求解,熟练掌握三角函数的定义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知sin(x-$\frac{π}{4}$)=$\frac{4}{5}$,则sin2x的值等于(  )
A.$\frac{8}{25}$B.$\frac{7}{25}$C.-$\frac{8}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|x-3|+|x-4|
(Ⅰ)求函数g(x)=$\sqrt{2-f(x)}$的定义域;
(Ⅱ)若对任意的实数x,不等式f(x)≥a2-a-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“$?x∈(0,\frac{π}{2}),sinx+cosx>1$”的否定是(  )
A.$?x∈(0,\frac{π}{2}),sinx+cosx≤1$B.$?x∉(0,\frac{π}{2}),sinx+cosx>1$
C.$?{x_0}∈(0,\frac{π}{2}),sin{x_0}+cos{x_0}≤1$D.$?{x_0}∈(0,\frac{π}{2}),sin{x_0}+cos{x_0}>1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设X为随机变量,从棱长为a的正方体ABCD-A1B1C1D1的八个顶点中任取四个点,当四点共面时,X=0;当四点不共面时,X的值为四点组成的四面体的体积
(1)求X=0的概率;
(2)求X的分布列,并求其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x(x2-3a),求f(x)在[0,1]上的最大值F(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=ax2-x在区间[0,1]上是减函数,则实数a的取值范围是a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sinθcosx+(tanθ-2)sinx-sinθ为偶函数.
(1)求sinθ,cosθ的值;
(2)若函数f(x)的最小值为0,求f(x)的最大值及取最大值时x取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的定义域:
(1)y=3${\;}^{\frac{1}{2x+1}}$;
(2)y=$\sqrt{1-(\frac{2}{3})^{x}}$;
(3)y=$\frac{1}{\sqrt{{a}^{x}-2}}$(a>0,a≠1);
(4)y=log2$\frac{1}{3x-2}$;
(5)y=$\sqrt{2lo{g}_{2}x-5}$;
(6)y=log2$\frac{1}{1-{3}^{x}}$.

查看答案和解析>>

同步练习册答案