精英家教网 > 高中数学 > 题目详情

今年我市的一个农贸公司计划收购某种农产品,如果按去年各季度该农产品市场价的最佳近似值m收购,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a万担,政府为了鼓励收购公司收购这种农产品,决定征收税率降低x个百分点,预测收购量可增加2x个百分点.
(1)经计算农贸公司的收购价为m=200(元/担),写出降低征税率后,税收y(万元)与x的函数关系式;
(2)要使此项税收值在税率调节后,不少于原计划收购的税收值的83.2%,试确定x的取值范围.

解:(1)由已知条件可知:降低征税率为(10-x)%,
农产品收购量为a(1+2x)%,农贸公司收购农产品总额为200a(1+2x)%(6分)
∴y=200a(1+2x%)(10-x%)=a(100+2x)(10-x)(0<x<10);(6分)
(2)由题意知:a(100+2x)(10-x)≥200a×10%×83.2%(8分)
即x2+40x-84≤0,-42≤x≤2
∵0<x<10,
∴0<x≤2(12分)
要使此项税收值在税率调节后,不少于原计划收购的税收值的83.2%,x的取值范围:0<x≤2.
分析:(1)先由已知条件可知:降低征税率为(10-x)%,再结合题意写出农产品收购量,农贸公司收购农产品总额,最后得出税收y(万元)与x的函数关系式;
(2)利用(1)中得出的函数式,结合题意得到一个关于x的不等关系,解此不等式即可确定出确定x的取值范围.
点评:本小题主要考查选择二次函数解决问题、解不等式等,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

生产某种产品x吨时,所需费用是数学公式元,当出售这种产品x吨时,每吨价格是数学公式(a,b是常数)元,如果生产出来的这种产品能全部出售,那么当产量是150吨时,利润最大,并且这时每吨的价格是40元,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数学公式展开式中偶数项二项式系数的和比(1+x)n展开式的各项系数和大112.
(Ⅰ)求n的值;
(Ⅱ)在(1)的条件下,求(1-x)2n展开式中系数最大的项;
(Ⅲ)在(1)的条件下,求数学公式展开式中的所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知正方体ABCD-A1B1C1D1中,点M为线段D1B1上的动点,点N为线段AC上的动点,则与线段DB1相交且互相平分的线段MN有


  1. A.
    0条
  2. B.
    1条
  3. C.
    2条
  4. D.
    3条

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

“双曲线的方程为数学公式-数学公式=1”是“双曲线的离心率为数学公式”的


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充分必要条件
  4. D.
    既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

以下说法正确的是


  1. A.
    命题p为真,则p的否命题一定为假
  2. B.
    命题p为真,则¬P一定为假
  3. C.
    p:?x∈R,x2+1>0,则¬P:?x∈R,x2+1<0
  4. D.
    “a、b都大于0”的否定是“a、b都不大于0”

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若Rt△ABC的斜边BC在平面α内,顶点A在α外,则△ABC在α上的射影是


  1. A.
    锐角三角形
  2. B.
    钝角三角形
  3. C.
    直角三角形
  4. D.
    一条线段或一钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

盒中装有大小形状都相同的5个小球,分别标以号码1,2,3,4,5,从中随机取出一个小球,其号码为偶数的概率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设曲线C:y=-ln x(0<x≤1)在点M(e-t,t)(t≥0)处的切线为l.
(1)求直线l的方程;
(2)若直线l与x轴、y轴所围成的三角形面积为S(t),求S(t)的最大值.

查看答案和解析>>

同步练习册答案