精英家教网 > 高中数学 > 题目详情
14.设满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…,)阶“期待数列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)分别写出一个单调递增的3阶和4阶“期待数列”;
(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;
(3)记n阶“期待数列”的前k项和为Sk(k=1,2,3,…,n),试证:|Sk|≤$\frac{1}{2}$.

分析 (1)数列$-\frac{1}{2}$,0,$\frac{1}{2}$为三阶期待数列,数列$-\frac{3}{8}$,-$\frac{1}{8}$,$\frac{1}{8}$,$\frac{3}{8}$为四阶期待数列.
(Ⅱ)设该2013阶“期待数列”的公差为d,由于a1+a2+…+a2013=0,可得a1007=0,a1008=d,对d分类讨论,利用等差数列的通项公式即可得出.
(Ⅲ)当k=n时,显然|Sn|=0$≤\frac{1}{2}$成立;当k<n时,根据条件①得:Sk=a1+a2+…+ak=-(ak+1+ak+2+…+an),即|Sk|=|a1+a2+…+ak|=|ak+1+ak+2+…+an|,再利用绝对值不等式的性质即可得出.

解答 解:(1)数列$-\frac{1}{2}$,0,$\frac{1}{2}$为三阶期待数列,
数列$-\frac{3}{8}$,-$\frac{1}{8}$,$\frac{1}{8}$,$\frac{3}{8}$为四阶期待数列.
(Ⅱ)设该2013阶“期待数列”的公差为d,
∵a1+a2+…+a2013=0,∴$\frac{2013({a}_{1}+{a}_{2013})}{2}$=0,
∴a1+a2013=0,即a1007=0,
∴a1008=d,
当d=0时,与期待数列的条件①②矛盾,
当d>0时,据期待数列的条件①②可得a1008+a1009+…+a2013=$\frac{1}{2}$,
∴1006d+$\frac{1006×1005}{2}$d=$\frac{1}{2}$,即d=$\frac{1}{1006×1007}$,
∴an=a1007+(n-1007)d=$\frac{n-1007}{1006×1007}$(n∈N*,n≤2013),
当d<0时,同理可得an=$\frac{-n+1007}{1006×1007}$,(n∈N*,n≤2013).
(Ⅲ)当k=n时,显然|Sn|=0$≤\frac{1}{2}$成立;
当k<n时,根据条件①得:Sk=a1+a2+…+ak=-(ak+1+ak+2+…+an),
即|Sk|=|a1+a2+…+ak|=|ak+1+ak+2+…+an|,
∴2|Sk|=|a1+a2+…+ak|+|ak+1+ak+2+…+an|≤|a1|+|a2|+…+|ak|+|ak+1|+…+|an|=1,
∴|Sk|$≤\frac{1}{2}$(k=1,2,…,n).

点评 本题考查了等差数列的通项公式及其性质、绝对值不等式的性质、新定义“期待数列”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数y=(a2-3a+3)ax是指数函数,则函数y=bx+2-a必过定点(  )
A.(0,1)B.(-2,-1)C.(0,-2)D.(-2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={y|y=x2},B={x|y=lg(2-x),则A∩B=(  )
A.A、[0,2]B.[0,2)C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若?x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ax3-3x2+1,若f(x)=0存在唯一正实数根x0,则a取值范围是(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=xekx(k≠0)
(1)函数f(x)的单调区间;
(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=ln(2-x-x2)的单调递减区间为(  )
A.(-∞,-$\frac{1}{2}$]B.(-2,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,+∞)D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2(-2x+4)的定义域是(  )
A.{x|x>-2}B.{x|x≥-2}C.{x|x<2}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b,c>0,$\frac{{a}^{2}}{1+{a}^{2}}$+$\frac{{b}^{2}}{1+{b}^{2}}$+$\frac{{c}^{2}}{1+{c}^{2}}$=1,证明.αbc≤$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案