精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AD=1,AB=2,E、F分别是AB、PD的中点.
(1)求证:AF平面PEC;
(2)求二面角P-EC-D的大小.
解法一:(1)证明:取PC的中点O,连结OF、OE.
∴FODC,且FO=
1
2
DC

∴FOAE.
又∵E是AB的中点,且AB=DC,
∴FO=AE.
∴四边形AEOF是平行四边形,∴AFOE.…(5分)
又OE?平面PEC,AF?平面PEC,
∴AF平面PEC.…(7分)
(2)作AM⊥CE,交CE延长线于M,连结PM.
由三垂线定理,得PM⊥CE.
∴∠PMA是二面角P-EC-D的平面角.…(11分)
由△AME~△CBE,可得AM=
2
2

tan∠PMA=
1
2
2
=
2

∴二面角P-EC-D的大小为arctan
2
.…(14分)
解法二:以A为原点,如图建立直角坐标系.则A(0,0,0),B(2,0,0),C(2,1,0),D(0,1,0),P(0,0,1),F(0,
1
2
1
2
)
,E(1,0,0),….(2分)
(1)证明:取PC的中点O,连结OE.则O(1,
1
2
1
2
)
AF
=(0,
1
2
1
2
),
EO
=(0,
1
2
1
2
)
,∴
AF
EO
.…(5分)
又OE?平面PEC,AF?平面PEC,∴AF平面PEC.…(7分)
(2)设平面PEC的法向量为
m
=(x,y,z).
PE
=(1,0,-1),
EC
=(1,1,0)

∴由
m
PE
=0
m
EC
=0
,可得
x-z=0
x+y=0.

令z=-1,则
m
=(-1,1,-1).…(11分)
由题意可得平面ABCD的法向量是
PA
=(0,0,-1)

cos<
m
PA
>=
m
PA
|
m
||
PA
|
=
1
3
=
3
3

∴二面角P-EC-D的大小为arccos
3
3
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧面AA1CC1⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC的中点,E为BC1的中点
(1)求证:OE平面A1AB;
(2)求二面角A-A1B-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1平面A1DE;
(2)求证:D1E⊥A1D;
(3)在线段AB上是否存在点E,使二面角D1-EC-D的大小为
π
6
?若存在,求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,AB=1,BD=
2
,∠ABD=90°,将它们沿对角线BD折起,折后的点C变为C1,且AC1=2.
(1)求证:平面ABD⊥平面BC1D;
(2)E为线段AC1上的一个动点,当线段EC1的长为多少时,DE与平面BC1D所成的角为30°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二面角α-l-β,点A∈α,B∈β,AC⊥l于点C,BD⊥l于D,且AC=CD=DB=1,求证:AB=2的充要条件α-l-β=1200

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥E-ABCD中,底面ABCD为正方形,EC⊥平面ABCD,AB=
2
,CE=1,G为AC与BD交点,F为EG中点,
(Ⅰ)求证:CF⊥平面BDE;
(Ⅱ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EFAB,∠BAF=90°,AD=2,AB=AF=2EF=1,点P在棱DF上.
(Ⅰ)若P是DF的中点,
(ⅰ)求证:BF平面ACP;
(ⅱ)求异面直线BE与CP所成角的余弦值;
(Ⅱ)若二面角D-AP-C的余弦值为
6
3
,求PF的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在四边形中,,则四边形的面积为(  )
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图:在平行六面体中,的交点。若则下列向量中与相等的向量是(    )
 
A. B.
C. D.

查看答案和解析>>

同步练习册答案