精英家教网 > 高中数学 > 题目详情
已知函数f(x)是奇函数:当x>0时,f(x)=x(1-x);则当x<0时,f(x)=(  )
分析:因为是要求x<0时的解析式,所以先设x<0,则-x>0,根据已知x>0时函数的解析式,所以可求出f(-x),再根据已知函数为奇函数求出f(x)与f(-x)之间的关系,从而可求出x<0时,f(x)的解析式.
解答:解:设x<0,则-x>0,
∵当x>0时,f(x)=x(-x+1),
∴f(-x)=-x(x+1)
又∵f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=x(x+1)
故选B.
点评:本题考查了函数求解析式问题.给定函数当x>0的解析式,根据函数奇偶性求x<0的解析式,关键点是利用奇函数的定义f(-x)=-f(x)求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且在区间[1,2]上单调递减,则f(x)在区间[-2,-1]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,函数g(x)=f(x-2)+3,那么g(x)的图象的对称中心的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x≥0时,f(x)=ln(x+1),则当x<0时,f(x)的解析式为
f(x)=-ln(-x+1)
f(x)=-ln(-x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x+1,则当x<0时,f(x)的解析式为
f(x)=x3+2x-1
f(x)=x3+2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,f(x)的定义域为(-∞,+∞).当x<0时,f(x)=
ln(-ex)
x
.这里,e为自然对数的底数.
(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)试判断 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小关系,这里n∈N*,并加以证明.

查看答案和解析>>

同步练习册答案