精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,PCBC,点EPC的中点,且平面PBC⊥平面ABCD.求证:

1)求证:PA∥平面BDE

2)求证:平面PAC⊥平面BDE.

【答案】1)证明见解析;(2)证明见解析;

【解析】

1)设ACBDO,连结OE,从而可得AP//OE,再利用线面平行的判定定理即可证出.

2)利用面面垂直的性质定理可得PC平面ABCD,即证出PCBD,再由ACBD,根据线面垂直的判定定理可得BD平面PAC,最后利用面面垂直的判定定理即可证出.

证明:(1)设ACBDO,连结OE

因为底面ABCD是菱形,故OBD中点,

又因为点EPC的中点,

所以AP//OE,又因为OE平面BDEAP平面BDE

所以AP//平面BDE.

2)因为平面PBC平面ABCDPCBC

平面PBC平面ABCDBCPC平面PBC

所以PC平面ABCD

BD平面ABCD,所以PCBD,∵ABCD是菱形,∴ACBD

PCBDACPCCAC平面PACPC平面PAC

所以BD平面PAC

BD平面BDE,所以平面PAC平面BDE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的侧棱与四棱锥的侧棱都与底面垂直,.

1)证明:平面

2)在棱上是否存在点M,使平面与平面所成角的正弦值为?如果存在,指出M点的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为.

.

①求数列的通项公式;

②若,求正整数的值;

,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.

女生

男生

总计

获奖

不获奖

总计

附表及公式:

其中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线t为参数).

1)求曲线上的点到曲线距离的最小值;

2)若把上各点的横坐标都扩大到原来的2倍,纵坐标都扩大到原来的倍,得到曲线,设,曲线交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线的焦点为,过点作直线与抛物线交于两点,当直线轴垂直时长为.

1)求抛物线的方程;

2)若的面积相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求处的切线方程:

2)已知实数时,求证:函数的图象与直线3个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下为简化的计划生育模型:每个家庭允许生男孩最多一个,即某一胎若为男孩,则不能再生下一胎,而女孩可以多个.为方便起见,此处约定每个家庭最多可生育3个小孩,即若第一胎或前两胎为女孩,则继续生,但若第三胎还是女孩,则不能再生了.设每一胎生男生女等可能,且各次生育相互独立.依据每个家庭最多生育一个男孩的政策以及我们对生育女孩的约定,令为某一家庭所生的女孩数,为此家庭所生的男孩数.

1)求的分布列,并比较它们数学期望的大小;

2)求概率,其中的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为平面上一点,为直线上任意一点,过点作直线的垂线,设线段的中垂线与直线交于点,记点的轨迹为.

1)求轨迹的方程;

2)过点作互相垂直的直线,其中直线与轨迹交于点,直线与轨迹交于点,设点分别是的中点,求的面积的最小值.

查看答案和解析>>

同步练习册答案