【题目】如图,在四棱锥P—ABCD中,底面ABCD是菱形,PC⊥BC,点E是PC的中点,且平面PBC⊥平面ABCD.求证:
(1)求证:PA∥平面BDE;
(2)求证:平面PAC⊥平面BDE.
【答案】(1)证明见解析;(2)证明见解析;
【解析】
(1)设ACBD=O,连结OE,从而可得AP//OE,再利用线面平行的判定定理即可证出.
(2)利用面面垂直的性质定理可得PC平面ABCD,即证出PCBD,再由ACBD,根据线面垂直的判定定理可得BD平面PAC,最后利用面面垂直的判定定理即可证出.
证明:(1)设ACBD=O,连结OE,
因为底面ABCD是菱形,故O为BD中点,
又因为点E是PC的中点,
所以AP//OE,又因为OE平面BDE,AP平面BDE,
所以AP//平面BDE.
(2)因为平面PBC平面ABCD,PCBC,
平面PBC平面ABCD=BC,PC平面PBC,
所以PC平面ABCD
又BD平面ABCD,所以PCBD,∵ABCD是菱形,∴ACBD,
又PCBD,ACPC=C,AC平面PAC,PC平面PAC,
所以BD平面PAC
又BD平面BDE,所以平面PAC平面BDE.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的侧棱与四棱锥的侧棱都与底面垂直,,,,,,.
(1)证明:平面;
(2)在棱上是否存在点M,使平面与平面所成角的正弦值为?如果存在,指出M点的位置;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足奇数项成等差,公差为,偶数项成等比,公比为,且数列的前项和为,,.
若,.
①求数列的通项公式;
②若,求正整数的值;
若,,对任意给定的,是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.
(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.
女生 | 男生 | 总计 | |
获奖 | |||
不获奖 | |||
总计 | |||
附表及公式:
其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线,(t为参数).
(1)求曲线上的点到曲线距离的最小值;
(2)若把上各点的横坐标都扩大到原来的2倍,纵坐标都扩大到原来的倍,得到曲线,设,曲线与交于A,B两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下为简化的计划生育模型:每个家庭允许生男孩最多一个,即某一胎若为男孩,则不能再生下一胎,而女孩可以多个.为方便起见,此处约定每个家庭最多可生育3个小孩,即若第一胎或前两胎为女孩,则继续生,但若第三胎还是女孩,则不能再生了.设每一胎生男生女等可能,且各次生育相互独立.依据每个家庭最多生育一个男孩的政策以及我们对生育女孩的约定,令为某一家庭所生的女孩数,为此家庭所生的男孩数.
(1)求,的分布列,并比较它们数学期望的大小;
(2)求概率,其中为的方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为平面上一点,为直线:上任意一点,过点作直线的垂线,设线段的中垂线与直线交于点,记点的轨迹为.
(1)求轨迹的方程;
(2)过点作互相垂直的直线与,其中直线与轨迹交于点、,直线与轨迹交于点、,设点,分别是和的中点,求的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com