精英家教网 > 高中数学 > 题目详情

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50


(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5﹣7分钟,乙每次解答一道几何题所用的时间在6﹣8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

【答案】
(1)解:由表中数据得K2的观测值K2= = >5.024.

所以根据统计有97.5%的把握认为视觉和空间能力与性别有关.


(2)解:设甲、乙解答一道几何题的时间分别为x,y分钟,

则基本事件满足的区域为 (如图所示).

设事件A为“乙比甲先做完此道题”

则满足的区域为x>y.

∴P(A)= =

即乙比甲先解答完的概率为


(3)解:在选择做几何题的8名女生中任意抽取两人,抽取方法有 =28 种,

其中甲、乙两人都不被被抽到有 =15种;恰有一人被抽到有 =12种;两人都被抽到有 =1种.

X可能取值为0,1,2,

P(X=0)= ,P(X=1)= ,P(X=2)=

X的分布列为:

X

0

1

2

P

∴E(X)=0× +1× +2× =


【解析】(1)计算K2 , 对照附表做结论;(2)作出甲,乙两人解答时间的平面区域,找出乙比甲早做完对于的区域,则区域面积的比值即为所求概率;(3)使用组合数公式和古典概型的概率计算公式分别计算X取不同值时的概率,得到X的分布列,求出数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积是.

(1)求点的轨迹的方程;

(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解下列不等式
(1)2x2﹣3x+1<0
(2) ≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为(

A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.求移栽的4株大树中:

1)两种大树各成活1株的概率;

2)成活的株数的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)求函数的单调区间及极值;

(3)对 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=1,an , an+1是方程x2﹣(2n+1)x+ 的两个根,则数列{bn}的前n项和Sn=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中 ),且函数的图象在点处的切线与函数的图象在点处的切线重合.

(1)求实数 的值;

(2)记函数,是否存在最小的正常数,使得当时,对于任意正实数,不等式恒成立?给出你的结论,并说明结论的合理性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当 时,不等式 恒成立,则实数a的取值范围是( )
A.[-5,-3]
B.[-6,1]
C.[-6,-2]
D.[-4,-3]

查看答案和解析>>

同步练习册答案