精英家教网 > 高中数学 > 题目详情
12、若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为
4x-y-3=0
分析:欲求l的方程,根据已知条件中:“切线l与直线x+4y-8=0垂直”可得出切线的斜率,故只须求出切点的坐标即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切点坐标.从而问题解决.
解答:解:4x-y-3=0与直线x+4y-8=0垂直的直线l与为:4x-y+m=0,
即y=x4在某一点的导数为4,
而y′=4x3,∴y=x4在(1,1)处导数为4,
故方程为4x-y-3=0.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为(  )
A、4x-y-3=0B、x+4y-5=0C、4x-y+3=0D、x+4y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=x4的一条切线l与直线x+4y-2011=0垂直,则直线l的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=x4的一条切线l与直线x+4y-2009=0垂直,则切线l的方程为
4x-y-3=0
4x-y-3=0

查看答案和解析>>

同步练习册答案