精英家教网 > 高中数学 > 题目详情
14.给出下边的程序框图,则输出的结果为(  )
A.$\frac{6}{7}$B.$\frac{5}{6}$C.$\frac{7}{8}$D.$\frac{4}{5}$

分析 模拟执行程序框图,依次写出每次循环得到的k,S的值,当k=6时不满足条件k≤5,退出循环,输出S的值.

解答 解:模拟执行程序框图,可得
S=0,k=1
S=$\frac{1}{2}$,满足条件k≤5,可得:k=2,S=$\frac{1}{2}+\frac{1}{6}$,
满足条件k≤5,可得:k=3,S=$\frac{1}{2}+\frac{1}{6}$+$\frac{1}{12}$,
满足条件k≤5,可得:k=4,S=$\frac{1}{2}+\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$
满足条件k≤5,可得:k=5,S=$\frac{1}{2}+\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$+$\frac{1}{30}$
满足条件k≤5,可得:k=6,S=$\frac{1}{2}+\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$
不满足条件k≤5,退出循环,输出S的值.
由于S=$\frac{1}{2}+\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$=$\frac{1}{2}$$+\frac{1}{2}$$-\frac{1}{3}$$+\frac{1}{3}$-…+$\frac{1}{6}-\frac{1}{7}$=$\frac{6}{7}$,
故选:A.

点评 本题考查了循环结构的程序框图,用裂项法求和是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在数列{an}中,a1=2,2an+1=2an+1,n∈N+,则a2015的值为1009.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn为数列{an}的前n项和,a1=c(c为常数且c≠0),且Sn=tan-c,n∈N*
(1)求实数t的值及{an}的通项公式;
(2)设bn=$\frac{n}{{a}_{n}}$,cn=$\frac{c•{2}^{n}}{{S}_{n}•{S}_{n+1}}$,记数列{bn},{cn}的前n项和分别为En、Fn,记Tn=En+Fn,是否存在最小整数M,对任意的n∈N*,有Tn≤M恒成立?若存在,求出M的值;若不存在,请说明理由.(记[x]表示不超过x的最大整数,如:[3]=3,[3,2]=3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}的每一项都不为零,且对于任意的n∈N*,都有$\frac{{a}_{n+2}}{{a}_{n}}$=q(q为常数),则称数列{an}为“类等比数列”.已知数列{bn}满足:b1=b(b∈R,b≠0),对于任意的n∈N*,都有bn•bn+1=2n+1
(1)求证:数列{bn}是“类等比数列”;
(2)若{bn}是单调递增数列,求实数b的取值范围;
(3)设数列{bn}的前n项和为Sn,试探讨$\lim_{n→∞}\frac{S_n}{{{b_n}+{b_{n+1}}}}$是否存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数$\frac{a+i}{b-3i}$(a,b∈R)对应的点在虚轴上,则ab的值是(  )
A.-15B.3C.-3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)=|x2+2x-1|,若a<b<-1,且f(a)=f(b),则(a+1)(b+1)的取值范围是(  )
A.(-1,1)B.(0,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=log7(x2-2x-3)的单调递减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于函数f(x)和g(x),设m∈{x∈R|f(x)=0},n∈{x∈R|g(x)=0},若存在m、n,使得|m-n|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=log2(x+1)-e1-x与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为(  )
A.[2,$\frac{7}{3}$]B.[$\frac{7}{3}$,3]C.[2,3]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.甲、乙两人在一次射击测试中各射靶10次,如图分别是这两人命中环数的直方图,若他们的成绩平均数分别为y1和y2,成绩的标准差分别为s1和s2,则(  )
A.y1=y2,s1>s2B.y1=y2,s1<s2C.y1>y2,s1=s2D.y1<y2,s1=s2

查看答案和解析>>

同步练习册答案