精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出直线的直角坐标方程;

(2)设点的坐标为,若点是曲线截直线所得线段的中点,求的斜率.

【答案】(1) 见解析,(2) -1.

【解析】

1)讨论倾斜角α的情况,即可写出直线的直角坐标方程。

2)将M的极坐标化为直角坐标,将曲线C的极坐标化为直角坐标,并把直线参数方程代入曲线C 的直角坐标,可得

1)当时,直线的直角坐标方程为

时,直线的直角坐标方程为.

2)点的直角坐标为,曲线的直角坐标方程为

代入曲线的直角坐标方程,

化简得

是曲线截直线所得线段的中点

,即

化简可得

所以直线的斜率为-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某篮球队有名队员,其中有名队员打前锋,有名队员打后卫,甲、乙两名队员既能打前锋又能打后卫.若出场阵容为名前锋,名后卫,则不同的出场阵容共有______种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点G(x,y)满足

(1)求动点G的轨迹C的方程;

(2)过点Q(1,1)作直线L与曲线交于不同的两点,且线段中点恰好为Q.求的面积;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂抽取了一台设备在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.

(1)计算该样本的平均值,方差;(同一组中的数据用该组区间的中点值作代表)

(2)根据长期生产经验,可以认为这台设备在正常状态下生产的产品的质量指标值服从正态分布,其中近似为样本平均值,近似为样本方差.任取一个产品,记其质量指标值为.若,则认为该产品为一等品;,则认为该产品为二等品;若,则认为该产品为不合格品.已知设备正常状态下每天生产这种产品1000个.

(i)用样本估计总体,问该工厂一天生产的产品中不合格品是否超过

(ii)某公司向该工厂推出以旧换新活动,补足50万元即可用设备换得生产相同产品的改进设备.经测试,设备正常状态下每天生产产品1200个,生产的产品为一等品的概率是,二等品的概率是,不合格品的概率是.若工厂生产一个一等品可获得利润50元,生产一个二等品可获得利润30元,生产一个不合格品亏损40元,试为工厂做出决策,是否需要换购设备

参考数据:①;②;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数有两个极值点,求实数a的取值范围;

2)若对任意都恒成立,求证:a的最大值大于8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1左右焦点为F1F2直线(1xy0与该椭圆有一个公共点在y轴上,另一个公共点的坐标为(m1).

1)求椭圆C的方程;

2)设P为椭圆C上任一点,过焦点F1F2的弦分别为PMPN,设λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放40年来,体育产业蓬勃发展反映了健康中国理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多亿元以上的概率;

(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;

(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E,点AB分别是椭圆E的左顶点和上顶点,直线AB与圆Cx2+y2c2相离,其中c是椭圆的半焦距,P是直线AB上一动点,过点P作圆C的两条切线,切点分别为MN,若存在点P使得△PMN是等腰直角三角形,则椭圆离心率平方e2的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,已知每售出一箱酸奶的利润为50元,当天未售出的酸奶降价处理,以每箱亏损10元的价格全部处理完.若供不应求,可从其它商店调拨,每销售1箱可获利30元.假设该超市每天的进货量为14箱,超市的日利润为元.为确定以后的订购计划,统计了最近50天销售该酸奶的市场日需求量,其频率分布表如图所示.

序号

分组

频数(天)

频率

1

0.16

2

12

3

0.3

4

5

5

0.1

合计

50

1

1)求的值;

2)求关于日需求量的函数表达式;

3)以50天记录的酸奶需求量的频率作为酸奶需求量发生的概率,估计日利润在区间内的概率.

查看答案和解析>>

同步练习册答案