【题目】如图为某大河的一段支流,岸线近似满足∥宽度为7圆为河中的一个半径为2的小岛,小镇位于岸线上,且满足岸线现计划建造一条自小镇经小岛至对岸的通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切,设
(1)试将通道的长表示成的函数,并指出其定义域.
(2)求通道的最短长.
科目:高中数学 来源: 题型:
【题目】技术员小张对甲、乙两项工作投入时间(小时)与做这两项工作所得报酬(百元)的关系式为:,若这两项工作投入的总时间为120小时,且每项工作至少投入20小时.
(1)试建立小张所得总报酬(单位:百元)与对乙项工作投入的时间(单位:小时)的函数关系式,并指明函数定义域;
(2)小张如何计划使用时间,才能使所得报酬最高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设
(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;
(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,x∈[-1,1],函数,a∈R的最小值为h(a).
(1)求h(a)的解析式;
(2)是否存在实数m,n同时满足下列两个条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项的和为且数列满足且对任意正整数都有成等比数列.
(1)求数列的通项公式.
(2)证明数列为等差数列.
(3)令问是否存在正整数使得成等比数列?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,,四边形为矩形,平面平面,.
(1)求证:平面⊥平面;
(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com