精英家教网 > 高中数学 > 题目详情

【题目】如图为某大河的一段支流,岸线近似满足宽度为7为河中的一个半径为2的小岛,小镇位于岸线上,且满足岸线现计划建造一条自小镇经小岛至对岸的通道(图中粗线部分折线段,右侧),为保护小岛,段设计成与圆相切,设

(1)试将通道的长表示成的函数,并指出其定义域.

(2)求通道的最短长.

【答案】(1)(2)

【解析】

(1)点作点,以为原点,建立如图所示的直角坐标系,先求出

再求出,即可求出再求函数的定义域.(2)利用导数求函数的最小值,即得通道ABC的最短长.

(1)过点作点,

因为的距离为

所以

为原点,建立如图所示的直角坐标系,

因为,所以设

则直线的方程为,即

因为与圆相切,圆的半径为

所以

因为,所以

所以

由于,所以

则因为函数上单调递减,所以

即函数的定义域为.

(2

,得,则,其中,且.

,得

0

+

极小值

所以当时,

即通道的最短长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】技术员小张对甲、乙两项工作投入时间(小时)与做这两项工作所得报酬(百元)的关系式为:,若这两项工作投入的总时间为120小时,且每项工作至少投入20小时.

1)试建立小张所得总报酬(单位:百元)与对乙项工作投入的时间(单位:小时)的函数关系式,并指明函数定义域;

2)小张如何计划使用时间,才能使所得报酬最高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AOB是一块半径为r的扇形空地,.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若,设

(Ⅰ)记活动场地与停车场占地总面积为,求的表达式;

(Ⅱ)当为何值时,可使活动场地与停车场占地总面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x[-1,1],函数,aR的最小值为ha).

(1)求ha)的解析式;

(2)是否存在实数mn同时满足下列两个条件:①m>n>3;②当ha)的定义域为[nm]时,值域为[n2m2]?若存在,求出mn的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在区间上的值域.

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项的和为数列满足且对任意正整数都有成等比数列.

(1)求数列的通项公式.

(2)证明数列为等差数列.

(3)令问是否存在正整数使得成等比数列?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面ABCD为直角梯形,为正三角形.

M为棱AB上一点,若平面SDM,,求实数的值;

,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,,四边形为矩形,平面平面.

(1)求证:平面⊥平面

(2)在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

同步练习册答案