精英家教网 > 高中数学 > 题目详情

【题目】如图一块长方形区域在边的中点处有一个可转动的探照灯其照射角始终为探照灯照射在长方形内部区域的面积为.

(1)当时,求关于的函数关系式;

(2)当时,求的最大值;

(3)若探照灯每9分钟旋转“一个来回”(转到,再回到,称“一个来回”,忽略处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.

【答案】(1)见解析;(2);(3)2分钟.

【解析】

(1)由题意结合三角函数的性质可得:当时,时,

2)结合(1)中函数的解析式和三角函数的性质可得当时,

3)结合实际问题和三角函数的性质计算可得点被照到的时间为分钟.

(1)当时,上,

时,都在上,

(2)当时,

由于,所以当时,

(3)在一个来回中,共转动了

其中点被照到时,共转动了

被照到的时间为分钟.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处的切线的斜率为2,求函数的单调区间;

2)若函数在区间上有零点,求实数的取值范围.是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.

……

(1)求第2行和第3行的通项公式

(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于的表达式;

(3)若,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A的长度均大于200米,现在边界APAQ处建围墙,在PQ处围竹篱笆.

1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?

2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100.若围围墙用了20000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1的侧面AA1B1B是菱形,侧面AA1C1C是矩形,平面AA1C1C⊥平面AA1B1B,∠BAA1AA1=2AC=2OAA1的中点.

1)求证:OCBC1

2)求点C1到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是双曲线的一条渐近线,点都在双曲线上,直线轴相交于点,设坐标原点为.

1)求双曲线的方程,并求出点的坐标(用表示);

2)设点关于轴的对称点为,直线轴相交于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

3)若过点的直线与双曲线交于两点,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为,短轴的一个端点的距离等于焦距.

1)求椭圆的标准方程;

2)设是四条直线所围成的矩形在第一、第二象限的两个顶点,是椭圆上任意一点,若,求证:为定值;

3)过点的直线与椭圆交于不同的两点,且满足△与△的面积的比值为,求直线的方程.

查看答案和解析>>

同步练习册答案