精英家教网 > 高中数学 > 题目详情
在△ABC中,若sin(
π
4
+A)cos(A+C-
3
4
π)=1,则△ABC为(  )
分析:通过已知关系式,推出sin(
π
4
+A)=1,且 cos(A+C-
3
4
π)=1,求出A,B,C的大小,即可判断三角形的形状.
解答:解:∵0≤sin(
π
4
+A)≤1,
0≤cos(A+C-
3
4
π)≤1,
由sin(
π
4
+A)cos(A+C-
3
4
π)=1,
故:sin(
π
4
+A)=1,且 cos(A+C-
3
4
π)=1,
A=
π
4
,A+C-
3
4
π=0
A=
π
4
,C=
π
2
,B=
π
4

故三角形ABC是等腰直角三角形.
故选C.
点评:本题考查三角形的形状的判定,三角函数值的范围的应用,考查灵活解题能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列说法:
①命题“若α=
π
6
,则sin α=
1
2
”的否命题是假命题;
②命题p:“?x0∈R,使sin x?>1”,则?p:“?x∈R,sin x≤1”;
③“φ=
π
2
+2kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;
④命题p:“?x∈(0,
π
2
),使sin x+cos x=
1
2
”,命题q:“在△ABC中,若sin A>sin B,则A>B”,那么命题¬p∧q为真命题.
其中正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sin(A+B)•sin(A-B)=sin2C,则此三角形的形状是
直角三角形
直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sin(π-A)•sinB<sin(
π
2
+A)•cosB,则此三角形是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),则△ABC的形状一定是(  )

查看答案和解析>>

同步练习册答案