精英家教网 > 高中数学 > 题目详情
9.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x,若对于任意的x∈[a,a+2],均有f(x+a)≥f2(x),则实数a取值范围是(  )
A.[1,+∞)B.$[-\frac{1}{2},1)$C.$(-∞,-\frac{3}{2}]$D.(0,+∞)

分析 根据函数为偶函数,求出函数f(x)的表达式,然后将不等式f(x+a)≥f2(x)化简,对a进行讨论,将x解出来,做到参数分离,由恒成立思想,即可求出a的范围.

解答 解:由题意,f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$
(1)当a≥0时,即有2x+a≥22x,x≤a,不合                        
(2)当a+2≤0时,即有$(\frac{1}{2})^{x+a}$≥$(\frac{1}{2})^{2x}$,x≥a,恒成立,a≤-2符合                 
(3)当-2<a<0时,若x+a>0,则a+2≥-a,a≥-1由(1)得不合
若x<0由(2)得成立,则x+a<0,x>0时恒成立,即$(\frac{1}{2})^{x+a}$≥22x,x≤-$\frac{a}{3}$,
∴a+2≤-$\frac{a}{3}$,∴a$≤-\frac{3}{2}$,∴-2<a≤-$\frac{3}{2}$
综上,实数a的取值范围a≤-$\frac{3}{2}$
故选:C.

点评 本题主要考查函数的奇偶性及运用,求出函数在定义域上的解析式是解题的关键,考查解决恒成立问题的常用方法:参数分离,必须掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.数列{an}:3an+2-5an+1+2an=0(n≥0,n∈N*),a1=a,a2=b,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在正方体ABCD-A1B1C1D1中,B1D与平面ACD1交于点O,BD与平面ACD1交于点M,求证:M,O,D1三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=logax(a>0,a≠1),当0<x1<x2时,试比较f($\frac{{x}_{1}+{x}_{2}}{2}$)与$\frac{1}{2}$[f(x1)+f(x2)]的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若方程ax2+(a+1)x+a2-4=0的两根中,一根大于1,另一根小于1,则实数a的取值范围是(-∞,-3)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知关于方程x2+2(m-1)x-2m=0的两根都在[-2,2)内.则实数m的取值范围是什么?
(2)关于x的方程2kx2-2x-3k-2=0的两实根一个小于1,另一个大于1,则实数k的取值范围是什么?
(3)方程x2-(a+4)x-2a2+5a+3=0的两根都在区间[-1,3]上,求实数m的取值范围.
(4)方程x2-2ax+4=0的两根均大于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点A(-2,3)作直线与抛物线y2=8x在第一象限相切于点B,记抛物线的焦点为F,则直线BF的斜率为(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,则f(f(x))≤3的解集为(  )
A.(-∞,-3]B.[-3,+∞)C.(-∞,$\sqrt{3}$]D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|-1<x<4},B={-1,1,2,4},则A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

查看答案和解析>>

同步练习册答案