精英家教网 > 高中数学 > 题目详情
6.在边长为3的等边三角形ABC中,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,2$\overrightarrow{BC}$+$\overrightarrow{BA}$=3$\overrightarrow{BE}$,则|$\overrightarrow{DE}$|=$\sqrt{3}$.

分析 由题意画出图形,以BC边所在直线为x轴,以BC的垂直平分线为y轴建立平面直角坐标系,求出D、B、C、A的坐标,设出E的坐标,由已知列式求得E的坐标,进一步求出$\overrightarrow{DE}$的坐标,代入向量模的公式得答案.

解答 解:如图,以BC边所在直线为x轴,以BC的垂直平分线为y轴建立平面直角坐标系,

则D(-$\frac{1}{2}$,0),B($-\frac{3}{2}$,0),C($\frac{3}{2},0$),A(0,$\frac{3\sqrt{3}}{2}$),
设E(x,y),
则由2$\overrightarrow{BC}$+$\overrightarrow{BA}$=3$\overrightarrow{BE}$,得(6,0)+($\frac{3}{2},\frac{3\sqrt{3}}{2}$)=($\frac{9}{2}+3x$,3y),
即$\left\{\begin{array}{l}{\frac{15}{2}=\frac{9}{2}+3x}\\{\frac{3\sqrt{3}}{2}=3y}\end{array}\right.$,解得E(1,$\frac{\sqrt{3}}{2}$),
∴$\overrightarrow{DE}=(\frac{3}{2},\frac{\sqrt{3}}{2})$,则$|\overrightarrow{DE}|=\sqrt{(\frac{3}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}=\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查平面向量的数量积运算,正确建立平面直角坐标系是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若点P在坐标平面xOy内,点A的坐标为(0,0,4)且|PA|=5,则点P的轨迹方程为x2+y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥BC;
(2)求三棱锥D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a,b∈R,且a≠2,定义在区间(-b,b)内的函数$f(x)={lg^{\frac{1+ax}{1+2x}}}$是奇函数
(1)求实数b的取值范围;
(2)判断函数f(x)的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中,正确的是(  )
A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为假命题
B.“x>3”是“x>2”的必要不充分条件
C.命题“p或q”为真命题,¬p为真,则命题q为假命题
D.命题“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.图中所示的圆锥的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行六面体ABCD-A1B1C1中,模与向量$\overrightarrow{{A_1}{B_1}}$的模相等的向量有(  )
A.7个B.3个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点M、N分别是正方体ABCD-A1B1C1D1的棱AB、BB1的中点,点E、F分别是线段D1M与C1N上的点,则满足与直线C1D1平行的直线EF有(  )
A.0条B.1条C.2条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2$\sqrt{2}$,E,F分别是AD,PC的中点.
(1)证明:PC⊥平面BEF;
(2)求平面BEF与平面BAP所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案