精英家教网 > 高中数学 > 题目详情

【题目】下面四组函数中,f(x)与g(x)表示同一个函数的是(
A.f(x)=|x|,
B.f(x)=2x,
C.f(x)=x,
D.f(x)=x,

【答案】C
【解析】解:函数f(x)=|x|的定义域为R, 的定义域为[0,+∞),定义域不同,不是同一函数;函数f(x)=2x的定义域为R, 的定义域为{x|x≠0},定义域不同,不是同一函数;
f(x)=x, =x,两函数为同一函数;
f(x)=x的定义域为R, 的定义域为{x|x≠0},定义域不同,不是同一函数.
故选:C.
【考点精析】根据题目的已知条件,利用函数的定义域及其求法的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且在(0,+∞)是增函数,又f(﹣3)=0,则不等式xf(x)≥0的解集是(
A.{x|﹣3≤x≤3}
B.{x|﹣3≤x<0或0<x≤3}
C.{x|x≤﹣3或x≥3}
D.{x|x≤﹣3或x=0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,将曲线为参数)上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)已知点,直线的极坐标方程为,它与曲线的交点为 ,与曲线的交点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年的国庆假期是实施免收小型客车高速通行费后的第一个重大节假日,有一个群名为“天狼星”的自驾游车队.该车队是由31辆车身长都约为5m(以5m计算)的同一车型组成的,行程中经过一个长为2725m的隧道(通过该隧道的车速不能超过25m/s),匀
速通过该隧道,设车队的速度为xm/s,根据安全和车流的需要,当0<x≤12时,相邻两车之间保持20m的距离;当12<x≤25时,相邻两车之间保持( )m的距离.自第1辆车车头进入隧道至第31辆车车尾离开隧道所用的时间为y(s).
(1)将y表示为x的函数;
(2)求该车队通过隧道时间y的最小值及此时车队的速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式ax2+bx+c>0的解集为{x|﹣1<x<2},则不等式a(x2+1)+b(x﹣1)+c>2ax的解集为(
A.{x|0<x<3}
B.{x|x<0或x>3}
C.{x|﹣2<x<1}
D.{x|x<﹣2或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=aex1(a为常数),且
(1)求a值;
(2)设 ,求不等式g(x)<2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程.

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c都是正数,
(1)若a+c=1,试比较a3+a2c+ab2+b2c与a2b+abc的大小;
(2)若a2+b2+c2=1,求证: ≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义实数a,b间的计算法则如下a△b=
(1)计算2△(3△1);
(2)对0<x<z<y的任意实数x,y,z,判断x△(y△z)与(x△y)△z的大小,并说明理由;
(3)写出函数y=(1△x)+(2△x),x∈R的解析式,作出该函数的图象,并写出该函数单调递增区间和值域(只需要写出结果).

查看答案和解析>>

同步练习册答案