精英家教网 > 高中数学 > 题目详情

如图,已知所在的平面,是⊙的直径,,C是⊙上一点,且

(1) 求证:
(2) 求证:
(3)当时,求三棱锥的体积.

(1)欲证EF∥面ABC,根据直线与平面平行的判定定理可知只需证EF与面ABC内一直线平行即可,根据中位线可知EF∥BC,又BC?面ABC,EF?面ABC,满足定理所需条件;
(2)欲证,可先证EF⊥面PAC,根据直线与平面垂直的判定定理可知只需证EF与面PAC内两相交直线垂直,而PA⊥面ABC,BC?面ABC,则BC⊥PA,而AB是⊙O的直径,则BC⊥AC,又PA∩AC=A,则BC⊥面PAC,满足定理条件;
(3)

解析试题分析:解: (1)证明:在三角形PBC中,
所以  EF//BC,
                           4分
(2) 
是⊙的直径,所以                 7分
所以,                     8分
因 EF//BC ,所以
因为, 所以.                  10分
(3) 在中, 
  
时,中点.中点 
       12分
                 14分
考点:直线与平面平行,三棱锥的体积
点评:本题主要考查直线与平面平行的判定,以及空间两直线的位置关系的判定和三棱锥的体积的计算,体积的求解在最近两年高考中频繁出现,值得重视.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.

(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:是⊙的直径,垂直于⊙所在的平面,PA="AC," 是圆周上不同于的任意一点,(1) 求证:平面。(2) 求二面角 P-BC-A 的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.

(Ⅰ)求证:DC平面ABC;
(Ⅱ)设,求三棱锥A-BFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,

(1)求异面直线 与所成角的大小;
(2)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.

(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为空间四边形的边上的点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面,为等边三角形.

(1)若,求证:平面平面
(2)若多面体的体积为,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面分别为的中点.

(I)证明:平面
(II)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案