精英家教网 > 高中数学 > 题目详情

【题目】假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率( )

A. B. C. D.

【答案】D

【解析】设送报人到达的时间为x,小明离家的时间为y,记小明离家前能拿到报纸为事件A;以横坐标表示报纸送到时间,以纵坐标表示小明离家时间,建立平面直角坐标系,小明离家前能得到报纸的事件构成区域如图示:由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示小明在离开家前能得到报纸,即事件A发生,所以故选:D.

点睛:此题为几何概型,将送报人时间和小明离家时间建立直角坐标系,分析可得试验的全部结果所构成的区域并求出其面积,同理可得时间A所形成的区域和面积,然后由几何概型的公式即可解得答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司过去五个月的广告费支出与销售额单位:万元之间有下列对应数据:

2

4

5

6

8

40

60

50

70

工作人员不慎将表格中的第一个数据丢失.已知呈线性相关关系且回归方程为则下列说法销售额与广告费支出正相关丢失的数据表中为30;该公司广告费支出每增加1万元,销售额一定增加万元若该公司下月广告投入8万元,则销售

额为70万元.其中,正确说法有

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

1求直线经过的定点坐标;

2若直线负半轴于,交轴正半轴于为坐标系原点,的面积为,求的最小值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市经营一批产品,在市场销售中发现此产品在30天内的日销售量P(件)与日期)之间满足,已知第5日的销售量为55件,第10日的销售量为50件。

(1)求第20日的销售量; (2)若销售单价Q(元/件)与的关系式为,求日销售额的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】届夏季奥林匹克运动会2016852016821在巴西里约热内卢举行为了解我校学生收看奥运会足球赛是否与性別有关,从全校学生中随机抽取名进行了问卷调查,得到列联表,从这名同学中随机抽取人,抽到收看奥运会足球赛 的学生的概率是.

男生

女生

合计

收看

不收看

合计

1请将上面的列联表补充完整,并据此资料分析收看奥运会足球赛与性別是否有关

2若从这名同学中的男同学中随机抽取人参加有奖竞猜活动,记抽到收看奥运会足球赛的学生人数为,求的分布列和数学期望.

参考公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,第五组,下图是按上述分组方法得到的频率分布直方图.

(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;

(2)请估计学校1800名学生中,成绩属于第四组的人数;

(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1求函数的单调区间;

2函数在定义域内存在零点,求的取值范围

3,当时,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,且将全班25人的成绩记为由右边的程序运行后,输出.据此解答如下问题:

求茎叶图中破损处分数在[50,60,[70,80,[80,90各区间段的频数;

利用频率分布直方图估计该班的数学测试成绩的众数中位数分别是多少?

查看答案和解析>>

同步练习册答案