精英家教网 > 高中数学 > 题目详情

【题目】设公差大于0的等差数列的前项和为.已知,且成等比数列,记数列的前项和为.

(1)求

(2)若对于任意的恒成立,求实数的取值范围.

【答案】(Ⅰ)()

【解析】试题分析:

(1)利用条件解方程组求出首项和公差,即可写出通项公式,再利用裂项法求和;

(2)写出不等式,分离参数后,转化为求关于n的函数的最小值,利用均值不等式即可求出.

试题解析:

(Ⅰ)设{an}的公差为d(d>0),

S3=153a1+=15,化简得a1+d=5,

又∵ a1a4a13成等比数列,

a42=a1a13,即(a1+3d)2=a1(a1+12d),化简3d=2a1

联立①②解得a1=3,d=2,

an=3+2(n-1)=2n+1. ∴

()+11,即

,又≥6 ,

当且仅当n=3时,等号成立

≥162, ∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.

(1)求点M的轨迹C的方程;

(2)过点G(0, )的动直线l与点的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C为锐角△ABC的内角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E为PB的中点.
(1)求证:CE∥平面PAD;
(2)求直线CE与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数 在(0,+∞)上为增函数,g(x)=f(x)+2
(1)求m的值,并确定f(x)的解析式;
(2)对于任意x∈[1,2],都存在x1 , x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数t的值;
(3)若2xh(2x)+λh(x)≥0对于一切x∈[1,2]成成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y= cosx的图象,需将函数y= sin(2x+ )的图象上所有的点的变化正确的是(
A.横坐标缩短到原来的 倍(纵坐标不变),再向左平行移动 个单位长度
B.横坐标缩短到原来的 倍(纵坐标不变),再向右平行移动 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为等腰梯形, ,将沿折起,使得平面平面的中点,连接 (如图2).

(1)求证: ;

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴且取相同的单位长度建立极坐标系.已知点的参数方程为为参数),点在曲线上.

1)求在平面直角坐标系中点的轨迹方程和曲线的普通方程

2)求的最大值.

查看答案和解析>>

同步练习册答案