精英家教网 > 高中数学 > 题目详情

【题目】过双曲线 =1(a>0,b>0)的右焦点F作渐近线的垂线,设垂足为P(P为第一象限的点),延长FP交抛物线y2=2px(p>0)于点Q,其中该双曲线与抛物线有一个共同的焦点,若 = + ),则双曲线的离心率的平方为( )
A.
B.
C.
+1
D.

【答案】D
【解析】解:由 = + ),可得P为FQ的中点,
设F(c,0),由渐近线方程y= x,①
可设直线FP的方程为y=﹣ (x﹣c),②
由①②解得P( ),
由中点坐标公式可得Q( ﹣c, ),
代入抛物线的方程可得 =2p( ﹣c),③
由题意可得c= ,即2p=4c,
③即有c4﹣a2c2﹣a4=0,
由e= 可得e4﹣e2﹣1=0,
解得e2=
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,

甲:25.44,25.43, 25.41,25.39,25.38

乙:25.41,25.42, 25.41,25.39,25.42.

从生产的零件内径的尺寸看、谁生产的零件质量较高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函数f(x)在x=e处的切线与y轴相交于点(0,2﹣e),求a的值;
(2)当1<x<2时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,短轴的一个端点到右焦点的距离为,直线与椭圆交于两点.

(1)求椭圆的方程;

(2)当实数变化时,求的最大值;

(3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列个结论:

①棱长均相等的棱锥一定不是六棱锥;

②函数既不是奇函数又不是偶函数;

③若函数的值域为,则实数的取值范围是

④若函数满足条件,则的最小值为

其中正确的结论的序号是:______. (写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,函数恒有意义,求实数的取值范围;

(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},a1=1,且an1﹣an1an﹣an=0(n≥2,n∈N*),记bn=a2n1a2n+1 , 数列{bn}的前n项和为Tn , 则满足不等式Tn 成立的最大正整数n为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 .

1)已知直线与双曲线交于不同的两点求实数的值;

(2)过点作直线与双曲线交于不同的两点若弦恰被点平分,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率

查看答案和解析>>

同步练习册答案