精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx2-mx-1,对一切实数x,f(x)<0恒成立,则m的范围为(  )
A、(-4,0)B、(-4,0]C、(-∞,-4)∪(0,+∞)D、(-∞,-4)∪[0,+∞)
分析:当m=0时,代入f(x)中求出函数值为-1小于0恒成立;当m不为0时,f(x)为二次函数,根据f(x)小于0恒成立得到其抛物线开口向下,且与x轴没有交点,即m小于0,且根的判别式小于0,列出关于m的不等式,根据m与m+4异号,转化为两个不等式组,求出不等式组的解集即可得到m的取值范围,综上,得到满足题意的m的范围.
解答:解:当m=0时,代入得f(x)=-1<0恒成立;
当m≠0时,由f(x)<0恒成立,
得到m<0,且△=(-m)2-4×m(-1)=m2+4m<0,
即m(m+4)<0,
可化为:
m>0
m+4<0
m<0
m+4>0

解得:-4<m<0,
综上,m的取值范围为(-4,0].
故选B
点评:此题考查了二次函数的图象与性质,考查了分类讨论的数学思想,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案