精英家教网 > 高中数学 > 题目详情
13.某地区为了绿化环境进行大面积植树造林,如图所示,在区域{(x,y)|x≥0,y≥0}内植树,第1棵树在点A1(0,1)处,第2棵树在点B1(1,1)处,第3棵树在点C1(1,0)处,第4棵树在点C2(2,0)处,接着按图中箭头方向每隔1个单位种1棵树.第n棵树所在点的坐标是(46,0),则n=(  )
A.1936B.2016C.2017D.2208

分析 将OA1B1C1设为第一个正方形,种植3棵树,依次下去,归纳出第二个正方形,第三个正方形种植的棵树,由第n棵树所在点坐标是(46,0),可求n.

解答 解:OA1B1C1设为第一个正方形,种植3棵树,依次下去,第二个正方形种植5棵树,第三个正方形种植7棵树,构成等差数列,由第n棵树所在点坐标是(46,0),则n=46×3+$\frac{46×45}{2}$×2=2208棵树.
故选D

点评 本题考点是进行简单的合情推理,由图形观察出规律是解题的重点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3+x-1,则在下列区间中,f(x)一定有零点的是(  )
A.(-1,0)B.(0,1)C.(-2,-1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=l,点P在棱DF上.
(Ⅰ)若P为DF的中点,求证:BF∥平面ACP;
(Ⅱ)求三棱锥P-BEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题为真命题的个数是(  )
①?x∈{x|x是无理数},x2是无理数;
②命题“?x0∈R,${x}_{0}^{2}$+1>3x0”的否定是“?x∈R,x2+1≤3x”;
③命题“若x2+y2=0,x∈R,y∈R,则x=y=0”的逆否命题为真命题;
④(2e-x)′=2e-x
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.观察以下不等式:
①1+$\frac{1}{2^2}$<$\frac{3}{2}$;
②1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$;
③1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,
则第六个不等式是1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$+…+$\frac{1}{{7}^{2}}$<$\frac{13}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.三条直线l1:x+y-1=0,l2:x-2y+3=0,l3:x-my-5=0围成一个三角形,则m的取值范围是(-∞,-1)∪(-1,2)∪(2,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l1:2x+(m+1)y+4=0,直线l2:mx+3y+4=0,若l1∥l2,则实数m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过椭圆C的上顶点与右顶点的直线L,与圆x2+y2=$\frac{12}{7}$相切,且椭圆C的右焦点与抛物线y2=4x的焦点重合.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点O作两条互相垂直的射线与椭圆C分别交于A,B两点(其中O为坐标原点),求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在底面是正方形的四棱锥P-ABCD中,已知PD⊥底面ABCD,且PD=CD,E为PC的中点,则异面直线PA与DE所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

同步练习册答案