精英家教网 > 高中数学 > 题目详情

(本小题满分12分)某产品生产单位产品时的总成本函数为.每单位产品的价格是134元,求使利润最大时的产量.

工厂生产36单位产品时有最大利润996元.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

依法纳税是每个公民应尽的义务,国家征收个人工资、薪金所得税是分段计算的:总收入不超过2 000元的,免征个人工资、薪金所得税;超过2 000元部分需征税,设全月纳税所得额(所得额指工资、薪金中应纳税的部分)为x,x=全月总收入-2 000元,税率如表所示:

级数
全月应纳税所得额x
税率
1
不超过500元部分
5%
2
超过500元至2 000元部分
10%
3
超过2 000元至5 000元部分
15%



9
超过100 000元部分
45%
(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某人2008年10月份工资总收入为4 200元,试计算这个人10月份应纳个人所得税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

沪杭高速公路全长千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于千米/时且不高于千米/时的时速匀速行驶到杭州.已知该汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米/时)的平方成正比,比例系数为;固定部分为200元.
(1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象是曲线C,直线与曲线
C相切于点(1,3).
(1)求函数的解析式;
(2)求函数的递增区间;
(3)求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元. 根据市场调查,销售商一次订购量不会超过500件。
(1)设一次订购量为件,服装的实际出厂单价为元,写出函数的表达式;
(2)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?
(服装厂售出一件服装的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒。

(1)试把方盒的容积表示成的函数;
(2)求多大时,做成方盒的容积最大。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(≥10)层,则每平方米的平均建筑费用为560+48单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(I)当时,求函数的定义域;
(II)若函数的定义域为,试求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在实数集上的偶函数在区间上是单调增函数.
(1)试写出满足上述条件的一个函数;
(2)若,求的取值范围

查看答案和解析>>

同步练习册答案