精英家教网 > 高中数学 > 题目详情
5.$\int_{\;-2}^{\;2}{(\sqrt{4-{x^2}}-{x^{2017}}})dx$=2π.

分析 令x=2sinu,则$\sqrt{4-{x}^{2}}$=2cosu,dx=2cosudu,从而$\int_{\;-2}^{\;2}{(\sqrt{4-{x^2}}-{x^{2017}}})dx$=${∫}_{0}^{π}4co{s}^{2}udu$-${∫}_{-2}^{2}{x}^{2017}dx$,由此能求出结果.

解答 解:令x=2sinu,则$\sqrt{4-{x}^{2}}$=2cosu,dx=2cosudu
∴$\int_{\;-2}^{\;2}{(\sqrt{4-{x^2}}-{x^{2017}}})dx$=${∫}_{0}^{π}4co{s}^{2}udu$-${∫}_{-2}^{2}{x}^{2017}dx$
=2${∫}_{0}^{π}(1+cos2u)du$-($\frac{1}{2018}{x}^{2018}$)${|}_{-2}^{2}$
=(2u+sin2u )${|}_{0}^{π}$-[$\frac{1}{2018}×{2}^{2018}$-$\frac{1}{2018}×(-2)^{2018}$]
=(2π+sin2π)-(2×0+sin0)=2π.
故答案为:2π.

点评 本题考查定积分的求法,是中档题,解题时要认真审题,注意换元法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和Sn=-2n2-n
(1)求通项an的表达式;
(2)说明{an}是一个怎样的等差数列;
(3)求a1+a3+a5+…+a25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式$|{x-2}|+\frac{1}{x-1}>x-2+\frac{1}{x-1}$的解集是{x|x<1或1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,a>0,b>0$的离心率e=2,左,右焦点分别为F1,F2,点P在双曲线的右支上,则$\frac{{|P{F_1}|}}{{|P{F_2}|}}$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,a2+b2=6abcosC且sin2C=2sinAsinB,则角C的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x=$\frac{1+yi}{1+i}$,其中i是虚数单位,x、y是实数,则x+y=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足a1=3,an-1+an+an+1=6(n≥2),Sn=a1+a2+…+an,则S10=21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线C:y2=4x的焦点为F,准线为1,过抛物线C上的点A作准线l的垂线,垂足为M,若△AMF与△AOF(其中O为坐标原点)的面积之比为3:1,则点A的坐标为(  )
A.(2,2$\sqrt{2}$)B.(4,4)C.(4,±4)D.(2,±2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等比数列{an}的前n项和为Sn,3a7=a42,a2=2a1,在等差数列{bn}中,b3=a4,b15=a5
(1)求证:Sn=2an-3
(2)求数列{$\frac{4}{(n+8){b}_{n}}$}的前n项和Tn

查看答案和解析>>

同步练习册答案