精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.

【答案】
(1)解:圆C的参数方程为 (θ为参数),

所以圆C的普通方程为(x﹣3)2+(y+4)2=4.…(2分)

得ρcosθ+ρsinθ=2,

∵ρcosθ=x,ρsinθ=y,

∴直线l的直角坐标方程x+y﹣2=0


(2)解:圆心C(3,﹣4)到直线l:x+y﹣2=0的距离为d= =

由于M是直线l上任意一点,则|MC|≥d=

∴四边形AMBC面积S=2× ACMA=AC =2 ≥2

∴四边形AMBC面积的最小值为


【解析】(1)根据参数方程和极坐标方程与普通方程的关系进行转化求解即可.(2)求出圆心坐标以及圆心到直线的距离,结合四边形的面积公式进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业今年初用72万元购买一套新设备用于生产,该设备第一年需各种费用12万元,从第二年起,每年所需费用均比上一年增加4万元,该设备每年的总收入为50万元,设生产x年的 盈利总额为y万元.写出y与x的关系式;

①经过几年生产,盈利总额达到最大值?最大值为多少?

②经过几年生产,年平均盈利达到最大值?最大值为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0对任意的θ∈(0, )恒成立,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知圆的圆心是直线轴的交点,且与直线相切,求圆的标准方程;

(2)已知圆,直线过点与圆相交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围;
(2)记两个极值点分别为x1 , x2 , 且x1<x2 . 已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,则该程序运行后输出的k值是(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE长为30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足tan θ.

(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?

(2)在保证上述采光要求的前提下,如何设计ABAD的长度,可使得活动中心的截面面积最大? (注:计算中π3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线 ,过的一条动直线与直线相交于N,与圆C相交于P,Q两点,MPQ中点.

(1)时,求直线的方程

(2),试问是否为定值,若为定值,请求出的值若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个关于圆锥曲线的命题:

①设A,B是两个定点,k为非零常数,若|PA|-|PB|=k,则P的轨迹是双曲线;

②过定圆C上一定点A作圆的弦AB,O为原点,若.则动点P的轨迹是椭圆;

③方程的两根可以分别作为椭圆和双曲线的离心率;

④双曲线与椭圆有相同的焦点.

其中正确命题的序号为________

查看答案和解析>>

同步练习册答案