精英家教网 > 高中数学 > 题目详情
14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

分析 (Ⅰ)由已知推导出BD⊥PA,BD⊥AC,由此能证明BD⊥平面PAC.
(Ⅱ)设AC∩BD=O,以O为坐标原点,建立空间直角坐标系O-xyz,利用向量法能求出当平面PBC与平面PDC垂直时,PA的长.

解答 证明:(Ⅰ)∵在四棱锥P-ABCD中,PA⊥平面ABCD,BD?平面ABCD
∴BD⊥PA,
∵底面ABCD是菱形,∴BD⊥AC,
∵PA∩AC=A,∴BD⊥平面PAC.
解:(Ⅱ)设AC∩BD=O,∵∠BAD=60°,PA=PB=2,
∴BO=1,AO=CO=$\sqrt{3}$,
如图,以O为坐标原点,建立空间直角坐标系O-xyz,
则 P(0,-$\sqrt{3}$,2),A(0,-$\sqrt{3}$,0),B(1,0,0),C(0,$\sqrt{3}$,0),
∴$\overrightarrow{BC}$=(-1,$\sqrt{3}$,0),
设P(0,-$\sqrt{3}$,t)(t>0),则$\overrightarrow{BP}$=(-1,-$\sqrt{3}$,t),
设平面PBC的法向量m=(x,y,z),
则$\overrightarrow{BC}•\overrightarrow{m}$=0,$\overrightarrow{BP}•\overrightarrow{m}$=0,∴$\left\{\begin{array}{l}{-x+3\sqrt{y}=0}\\{-x-\sqrt{3}y+tz=0}\end{array}\right.$,
令y=$\sqrt{3}$,则x=3,z=$\frac{6}{t}$,∴$\overrightarrow{m}=(3,\sqrt{3},\frac{6}{t})$,
同理,平面PDC的法向量$\overrightarrow{n}=(-3,\sqrt{3},\frac{6}{t})$,
∵平面PCB⊥平面PDC,∴$\overrightarrow{m}•\overrightarrow{n}$=--6+$\frac{36}{{t}^{2}}$=0,
解得t=$\sqrt{6}$,∴PA=$\sqrt{6}$.

点评 本题考查线面垂直的证明,考查面面垂直时线段长的求法,是中档题,解题时要注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设f(x,y)=x2+y2-2x+4y+4.
(I)若f(x,x)>2ax2+2ax对于任意的实数x都恒成立,求实数a的最值范围;
(Ⅱ)是否存在斜率为1的直线l,使l被曲线C:f(x,y)=8截得的弦为AB,且以AB为直径的圆恰好过曲线C的中心?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC中,A(-4,3),B(2,2),C(-1,8),求向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设0<x1<x2<x3<π,证明:$\frac{sin{x}_{1}-sin{x}_{2}}{{x}_{1}-{x}_{2}}$>$\frac{sin{x}_{2}-sin{x}_{3}}{{x}_{2}-{x}_{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在极坐标系中,直线l:θ=$\frac{π}{4}$(ρ∈R)和圆C:ρ=1的位置关系是(  )
A.相切B.相交且直线过圆心
C.相交且直线不过圆心D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M=$\left\{{x\left|{y=ln({x^2}-3x-4)}\right.}\right\},N=\left\{{y\left|{y=\sqrt{{x^2}-1}}\right.}\right\}$,则M∩N=(  )
A.(-∞,-1)B.(0,+∞)C.(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)为定义在R上的可导函数,下列命题:
①若y=f(x)是奇函数,且在(0,+∞)上单调递增,则当x<0时,f(x)<0;
②若对任意的x>0,都有f(x)<f(0),则函数y=f(x)在[0,+∞)上一定是减函数;
③“函数y=|f(x)|的图象关于y轴对称”是“y=f(x)为奇函数”的必要不充分条件;
④若存在xi∈[a,b](1≤i≤n;n≥2;i,n∈N+),当x1<x2<x3<…<xn时,有f(x1)<f(x2)<f(x3)<…<f(xn),则函数y=f(x)在区间[a,b]上是单调递增;
⑤若?x0∈(a,b)使f′(x0)=0,且f′(a)f′(b)<0,则x=x0为函数y=f(x)的一个极值点.
其中正确命题的序号为①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,ABCD为空间四边形,点E,F分别是AB,BC的中点,点G,H分别在CD,AD上,且DH=$\frac{1}{3}$AD,DG=$\frac{1}{3}$CD.
求:(1)判断EFGH的形状;
(2)证明直线EH,FG必相交于一点,且这个交点在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.三棱锥P-ABC中,∠APB=∠BPC=∠CPA=90°,M在△ABC内,∠MPA=∠MPB=60°,则∠MPC=45°.

查看答案和解析>>

同步练习册答案