精英家教网 > 高中数学 > 题目详情

已知函数,且函数在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则的取值范围为(    )

A.        B.        C.             D.

 

【答案】

B

【解析】

试题分析:

因为函数在区间(0,1)内取得极大值,

在区间(1,2)内取得极小值,所以

画出可行域如图所示,为可行域内的点到的距离的平方,由图可知,距离的最小值为距离的最大值为,所以的取值范围为

考点:本小题主要考查导数与极值的关系以及线性规划的应用.

点评:对于此类问题,必须牢固掌握导数的运算,利用导数求单调性以及极值和最值.本题导数与线性规划结合,学生必须熟练应用多个知识点,准确分析问题考查的实质,正确答题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•雁江区一模)已知函数f(x)=m+logax(a>0且a≠1)的图象过点(8,2),点P(3,-1)关于直线x=2的对称点Q在f(x)的图象上.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)令g(x)=2f(x)-f(x-1),求g(x)的最小值及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天河区三模)设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=Inx+
b+2x+1
(x>1)
,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知函数f(x)=2aex+1,g(x)=lnx-lna+1-ln2,其中a为常数,e=2.718…,函数y=f(x)的图象与坐标轴交点处的切线为l1,函数y=g(x)的图象与直线y=1交点处的切线为l2,且l1∥l2
(Ⅰ)若对任意的x∈[1,5],不等式x-m>
x
f(x)-
x
成立,求实数m的取值范围.
(Ⅱ)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x.我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,且对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差数列{bn}的任一项bn∈A∩B,其中b1是A∩B中最的小数,且88<b8<93,求{bn}的通项公式;
(3)设数列{cn}满足cn=
nan-1
,是否存在正整数p,q(1<p<q),使得c1,cp,cq成等比数列?若存在,求出所有的p,q的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x2
(1)当a=2时,求函数y=f(x)在[
12
,2]
上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x)在区让(0,3)上不单调,求a的取值范围;
(3)当a=2时,函数h(x)=f(x)-mx的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,又y=h′(x)是y=h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.证明h′(αx1+βx2)<0.

查看答案和解析>>

同步练习册答案