精英家教网 > 高中数学 > 题目详情
7.已知定义在R上的奇函数f(x)满足f(x+4)=f(x).当x∈(0,2),f(x)=ln(x2-x+b).若函数f(x)在区间[-2,2]上有5个零点,则实数b的取值范围是($\frac{1}{4}$,1]∪{$\frac{5}{4}$}.

分析 先根据函数的奇偶性分析出奇函数f(x)在区间[-2,2]上有零点x=-2,x=0,x=2,所以原问题等价为:f(x)在区间(0,2)内必有唯一零点,再结合图象求解.

解答 解:∵f(x+4)=f(x),且f(x)奇函数,
∴令x=-2代入上式得,f(2)=f(-2)=-f(2),
所以,f(2)=0且f(-2)=0,
所以,f(x)在区间[-2,2]上有零点x=-2,x=0,x=2,
要使函数f(x)在区间[-2,2]上有5个零点,
则f(x)在区间(0,2)内必有唯一零点,
即方程x2-x+b=1在(0,2)内有唯一实数根,
分离参数b得,b=-x2+x+1=-(x-$\frac{1}{2}$)2+$\frac{5}{4}$,x∈(0,2),
结合函数g(x)=-(x-$\frac{1}{2}$)2+$\frac{5}{4}$的图象,如右图(实线)
要使g(x)=b只有一个实数根,则b∈(g(2),g(1)]=(-1,1],
另外,当b=g($\frac{1}{2}$)=$\frac{5}{4}$(过顶点),也符合题意,
又因为,当x∈(0,2)时,真数x2-x+b=(x-$\frac{1}{2}$)2+b-$\frac{1}{4}$≥b-$\frac{1}{4}$>0,
所以,b>$\frac{1}{4}$,
故实数b的取值范围为:($\frac{1}{4}$,1]∪{$\frac{5}{4}$}.

点评 本题主要考查了函数的图象与性质,涉及函数的奇偶性和函数零点的确定,体现了数形结合的解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=lnx+(x-b)2(b∈R)在区间$[{\frac{1}{2},2}]$上存在单调递增区间,则实数b的取值范围是(  )
A.$({-∞,\frac{3}{2}})$B.$({-∞,\frac{9}{4}})$C.(-∞,3)D.$({-∞,\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3-3x.
(1)讨论f(x)的单调区间;
(2)若函数g(x)=f(x)-m在$[{-\frac{3}{2},3}]$上有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.奇函数f(x)定义域是(t,2t+3),则t=(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中不正确的是③④⑤(只需填写序号)
①设集合A=φ,则φ⊆A;
②若集合A={x|x2-1=0},B={-1,1},则A=B;
③在集合A到B的映射中,对于集合B中的任何一个元素y,在集合A中都有唯一的一个元素x与之对应;
④函数f(x)=$\frac{1}{x}$的单调减区间是(-∞,0)∪(0,+∞);
⑤设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点与抛物线C2:y2=4x的焦点相同,记为F,设点M是两曲线在第一象限内的公共点,且|MF|=$\frac{5}{3}$,则M点的横坐标是$\frac{2}{3}$,a+b=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若不等式组$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-2≥0\\ x-y+2m≥0\end{array}\right.$表示的平面区域为三角形,且其面积等于12,则m的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求椭圆的离心率:
(1)长轴长和短轴长分别为26和24;
(2)一焦点坐标为(5,0),短轴长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)^{x}-1,x≤1}\\{1+lo{g}_{a}x,x>1}\end{array}\right.$,(a>0且a≠1).
(1)当a=2时,求函数f(x)的零点;
(2)若函数f(x)的一个零点为2,求实数a.

查看答案和解析>>

同步练习册答案