【题目】已知函数,.
(Ⅰ)求函数的极值;
(Ⅱ)若实数为整数,且对任意的时,都有恒成立,求实数的最小值.
科目:高中数学 来源: 题型:
【题目】对于函数,有下列4个命题:①任取,都有恒成立;②,对于一切恒成立;③函数有3个零点;④对任意,不等式恒成立.则其中所有真命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的两个焦点分别为F1,F2,离心率为,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知等腰梯形中,是的中点,,将沿着翻折成,使平面平面.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点P,使得平面,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
【答案】(1);(2)
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为,
,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(),,(),
,
,
由此可求面积的最大值.
试题解析:(1)由题意可知直线的直角坐标方程为,
曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为,
所以曲线C的极坐标方程为,
即.
(2)由(1)不妨设M(),,(),
,
,
当 时, ,
所以△MON面积的最大值为.
【题型】解答题
【结束】
23
【题目】已知函数的定义域为;
(1)求实数的取值范围;
(2)设实数为的最大值,若实数, , 满足,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.若曲线的极坐标方程为,点的极坐标为,在平面直角坐标系中,直线经过点,且倾斜角为.
(1)写出曲线的直角坐标方程以及点的直角坐标;
(2)设直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象两条相邻的对称轴间的距离为.
(1)求的值;
(2)将函数的图象沿轴向左平移个单位长度后,再将得到的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数的图象,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com