精英家教网 > 高中数学 > 题目详情

【题目】如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)B1作直线交椭圆于PQ两点,使PB2⊥QB2,△PB2Q的面积.

【答案】(1) +=1 (2)

【解析】试题分析:()设椭圆的方程为F2c0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2﹣b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程;

)由()知B1﹣20),B220),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求△PB2Q的面积.

解:()设椭圆的方程为F2c0

∵△AB1B2是的直角三角形,|AB1|=AB2|∴∠B1AB2为直角,从而|OA|=|OB2|,即

∵c2=a2﹣b2∴a2=5b2c2=4b2

△AB1B2中,OA⊥B1B2∴S=|B1B2||OA|=

∵S=4∴b2=4∴a2=5b2=20

椭圆标准方程为

)由()知B1﹣20),B220),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2

代入椭圆方程,消元可得(m2+5y2﹣4my﹣16=0①

Px1y1),Qx2y2),

=

∵PB2⊥QB2

∴m=±2

m=±2时,可化为9y2±8y﹣16﹣0

∴|y1﹣y2|==

∴△PB2Q的面积S=|B1B2||y1﹣y2|=×4×=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆,经过原点的两直线满足,且交圆于不同两点交 于不同两点,记的斜率为

(1)求的取值范围;

(2)若四边形为梯形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

(Ⅰ)判断函数内零点的个数,并说明理由;

(Ⅱ),使得不等式成立,试求实数的取值范围;

(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:任意两个等边三角形都是相似的.

①它的否定是_________________________________________________________

②否命题是_____________________________________________________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:

(1)记集合A{1p,2}B{2,3},则“p3”是“ABB”的__________________

(2)a1”是“函数f(x)|2xa|在区间上为增函数”的________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是(

A.xA<xB , B比A成绩稳定
B.xA>xB , B比A成绩稳定
C.xA<xB , A比B成绩稳定
D.xA>xB , A比B成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%—60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.

(Ⅰ)求小明连续两天都遇上拥挤的概率;

(Ⅱ)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;

(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,平面平面,四边形为菱形,且 中点.

(Ⅰ)求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在棱上是否存在点,使 ? 若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0,且直线l与圆C交于A、B两点.
(1)若|AB|= ,求直线l的倾斜角;
(2)若点P(1,1),满足2 = ,求直线l的方程.

查看答案和解析>>

同步练习册答案