精英家教网 > 高中数学 > 题目详情
5.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从M点测得A点的俯角∠NMA=30°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°;已知山高BC=200m,则山高MN=(  )
A.300mB.200$\sqrt{2}$mC.200$\sqrt{3}$mD.300$\sqrt{2}$m

分析 由题意,通过解△ABC可先求出AC的值,解△AMC,由正弦定理可求AM的值,在Rt△AMN中,MN=AM•sin∠MAN,从而可求得MN的值.

解答 解:在△ABC中,∵∠BAC=45°,∠ABC=90°,BC=200 m,
∴AC=$\frac{200}{sin45°}$=200$\sqrt{2}$m,在△AMC中,
∵∠MAC=75°,∠MCA=60°,
∴∠AMC=45°,由正弦定理可得$\frac{AM}{sin∠ACM}$=$\frac{AC}{sin∠AMC}$,
即$\frac{AM}{sin60°}$=$\frac{200\sqrt{2}}{sin45°}$,
∴解得AM=200$\sqrt{3}$m,
∴在Rt△AMN中,MN=AM•sin∠MAN=200$\sqrt{3}$×sin 60°=300(m).
故选:A.

点评 本题主要考查了正弦定理的应用,考查了解三角形的实际应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设D是线段BC的中点,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AE}$,则(  )
A.$\overrightarrow{AD}=2\overrightarrow{AE}$B.$\overrightarrow{AD}=4\overrightarrow{AE}$C.$\overrightarrow{AD}=2\overrightarrow{EA}$D.$\overrightarrow{AD}=4\overrightarrow{EA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{\begin{array}{l}\sqrt{x},x≥1\\ \frac{1}{x},0<x<1\\{2^x},x<0\end{array}\right.$,则f[f(-2)]=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.幂函数$f(x)={x^{\frac{1}{5}}}$,若0<x1<x2,则$f({\frac{{{x_1}+{x_2}}}{2}})$,$\frac{{f({x_1})+f({x_2})}}{2}$大小关系是(  )
A.$f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$B.$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$
C.$f({\frac{{{x_1}+{x_2}}}{2}})=\frac{{f({x_1})+f({x_2})}}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=lnx+2x-6有唯一的零点在区间(2,3)内,且在零点附近的函数值用二分法逐次计算,得到数据如表所示.那么当精确度为0.02时,方程lnx+2x-6=0的一个近似根为(  )
x2.52.531252.5468752.56252.6252.75
f(x)0.0840.0090.0290.0660.2150.512
A.2.5B.2.53C.2.54D.2.5625

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数y=f(x)对任意的x,y∈R,恒有f(x+y)=f(x)+f(y).当x>0时,恒有f(x)<0
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)判断函数f(x)的单调性,并证明你的结论;
(3)若f(2)=1,解不等式f(-x2)+2f(x)+4≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2-2x+3=0},B={x|ax-1=0}.
(1)若A∩B={-1},求实数a的值;
(2)若A∩B=B,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=|lg|x||,若a<b<0,且f(a)=f(b),则a2+b2的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=x+\frac{4}{x}\;\;,\;\;g(x)={2^x}+a$,若$?{x_1}∈[{\frac{1}{2}\;\;,\;\;3}]$,?x2∈[2,3],f(x1)≥g(x2),则实数a的取值范围是(  )
A.(-∞,1]B.[1,+∞)C.(-∞,0]D.[0,+∞)

查看答案和解析>>

同步练习册答案