精英家教网 > 高中数学 > 题目详情
12.在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=4,点D是A1C1的中点,则异面直线AD和BC1所成角的大小为30°.

分析 可作出图形,取AC中点E,并连接C1E,BE,从而有C1E∥AD,从而得到∠EC1B或其补角便为异面直线AD和BC1所成角,根据条件可以求出△BC1E的三边长度,从而可以得到∠BEC1=90°,然后求sin∠BC1E,这样即可得出异面直线AD和BC1所成角的大小.

解答 解:如图,取AC中点E,连接C1E,BE,则C1E∥AD;

∴∠EC1B或其补角为异面直线AD和BC1所成角;
根据条件得:BE=2$\sqrt{2}$,C1E=2$\sqrt{6}$,BC1=4$\sqrt{2}$;
∴BE2+C1E2=BC12
∴∠BEC1=90°;
∴sin∠EC1B=$\frac{2\sqrt{2}}{4\sqrt{2}}$=$\frac{1}{2}$;
∴∠EC1B=30°;
∴异面直线AD和BC1所成角的大小为30°.
故答案为:30°

点评 考查异面直线所成角的概念及求法,直角三角形边的关系,正弦函数的定义,以及已知三角函数值求角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若曲线Cl:x2+y2-2x=0与曲线C2:(x-1)(y-mx-m)=0有四个不同的交点,则实数m的取值范围是(  )
A.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$B.$({-\frac{{\sqrt{3}}}{3},0})∪({0,\frac{{\sqrt{3}}}{3}})$C.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$D.$({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,若存在非零实数T,使得${a_{n+T}}={a_n}({N∈{n^*}})$成立,则称数列{an}是以T为周期的周期数列.若数列{bn}满足bn+1=|bn-bn-1|,且b1=1,b2=a(a≠0),则当数列{bn}的周期最小时,其前2017项的和为(  )
A.672B.673C.3024D.1345

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=-x3+3x2+9x+a,x∈[-2,2]的最小值为-2,则f(x)的最大值为(  )
A.25B.23C.21D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别为角A,B,C的对边,a2-c2=b2-$\frac{8bc}{5}$,a=6,sinB=$\frac{4}{5}$.
(Ⅰ)求角A的正弦值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与双曲线2x2-y2=3有相同渐近线,且过点P(1,2)的双曲线的方程为(  )
A.2x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{2}$-x2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x-2y-3=0在y轴上的截距是(  )
A.3B.$\frac{3}{2}$C.-$\frac{3}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y≤2\\ x≥0\\ y≥0\end{array}\right.$,则当y≤ax+a-1恒成立时,实数a的取值范围是a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=log2(3cosx+1),x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,2].

查看答案和解析>>

同步练习册答案