精英家教网 > 高中数学 > 题目详情
20.下列变量关系是函数关系的是(  )
A.三角形的边长与面积之间的关系
B.等边三角形的边长与面积之间的关系
C.四边形的边长与面积之间的关
D.菱形的边长与面积之间的关

分析 根据变量相关关系的含义,判定三角形的边长与面积;菱形的边长与面积;四边形的边长与面积都是相关关系,等边三角形边长与面积是函数关系.

解答 解:∵三角形的边长与面积;菱形的边长与面积;四边形的边长与面积都是相关关系,
而等边三角形的面积可由边长求出,∴等边三角形边长与面积是函数关系.
故选:B.

点评 本题考查了变量之间相关关系与函数关系的判定,理解变量相关关系的含义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示的多面体中,面ABCD是边长为2的正方形,平面PDCQ⊥平面ABCD,PD⊥DC,E,F,G分别为棱BC,AD,PA的中点.
(Ⅰ)求证:EG∥平面PDCQ;
(Ⅱ)已知二面角P-BF-C的余弦值为$\frac{\sqrt{6}}{6}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,直线l是曲线y=f(x)在x=3处的切线,f'(x)表示函数f(x)的导函数,则f(3)+f'(3)的值为$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)是定义在[-1,1]上的奇函数,f(1)=1,且对任意的a、b∈[-1,1],当a+b≠0时,都有$\frac{f(a)+f(b)}{a+b}$>0
(1)若a,b∈[-1,1]且a-b≠0,求证:$\frac{f(a)-f(b)}{a-b}$>0,并据此说明函数f(x)的单调性;
(2)解不等式f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x);
(3)若对于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,求负数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC的外接圆的圆心为O,AB=2,AC=3,BC=4,则$\overrightarrow{AO}$•$\overrightarrow{BC}$=(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.2D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(3,0)$,则$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设各项均为正数的数列{an}的前n项和为Sn,且满足a1=1,4Sn=anan+1+1(n∈N*).
(1)求a15的值;
(2)求证:数列{an}是等差数列;
(3)若am-12,am,am+k+18成等差数列,其中m∈N*,k∈N*,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中既是偶函数,最小正周期又是π的是(  )
A.y=sin2xB.y=cosxC.y=tanxD.y=|tanx|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-ex(a∈R)在(0,+∞)上有两个零点为x1,x2(x1<x2
(1)求实数a的取值范围;
(2)求证:x1+x2>4.

查看答案和解析>>

同步练习册答案