精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1求函数的单调区间

2探究:是否存在实数使得恒成立若存在求出的值若不存在请说明理由.

【答案】1的单调减区间为单调增区间为;2.

【解析】【试题分析】1)求导后令导数为零,求出极值点并写出单调区间.2由(1)知函数的最小值为,构造函数,利用导数可求得的最大值为零,故当且仅当时取等号从而得到.

【试题解析】

1)依题意, 解得

故当函数单调递减函数单调递增

故函数的单调减区间为单调增区间为

2其中

由题意知上恒成立

1)可知,∴

.

变化时 的变化情况列表如下

当且仅当时取等号

从而得到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形且,侧面底面,且侧面是正三角形,中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上为增函数,求的取值范围;

(2)若函数有两个不同的极值点,记作,且,证明:为自然对数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂共有名工人,已知这名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成万件及以上的工人为优秀员工,现将其分成组,第组、第组、第组、第组、第组对应的区间分别为,并绘制出如图所示的频率分布直方图.

(1)求的值,并求去年优秀员工人数;

(2)选取合适的抽样方法从这名工人中抽取容量为的样本,求这组分别应抽取的人数;

(3)现从(2)中人的样本中的优秀员工中随机选取名传授经验,求选取的名工人在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足以下三个条件:①对于任意的,都有;②对于任意的都有③函数的图象关于y轴对称,则下列结论中正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.

1)求曲线的参数方程;

2)直线的参数方程为(为参数),求曲线上到直线的距离最短的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学要求下午放学后的1700-1800接学生回家,该学生家长从下班后到达学校(随机)的时间为1730-1830,则该学生家长从下班后,在学校规定时间内接到孩子的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.

1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;

(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.

查看答案和解析>>

同步练习册答案