精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足an= (n≥2),若{an}为等比数列,则a1的取值范围是

【答案】{a1|a1 }
【解析】解:①当 时,a2=4.由于 ,因此a3=32=9. ∵{an}为等比数列,∴ =a1a3 , ∴42=9a1 , 解得a1= .而a4=42=16,不满足{an}为等比数列,舍去.
当a1≥22时,a2=2a1 , ∴a2≥8.
当8≤a2<9时,a3=32=9.∵{an}为等比数列,∴ =a1a3 , ∴ =9a1 , 解得a1= ,舍去.
当a2≥9时,a3=2a2 . 可得{an}为等比数列,公比为2.此时a1
综上可得:a1的取值范围是{a1|a1 }.
【考点精析】解答此题的关键在于理解等比数列的通项公式(及其变式)的相关知识,掌握通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4﹣1:平面几何 如图AB是⊙O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F.
(I)求证:∠DEA=∠DFA;
(II)若∠EBA=30°,EF= ,EA=2AC,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC的外接圆O的直径为AB,CD⊥平面ABC,BE∥CD.

(1)求证:平面ADC⊥平面BCDE;

(2)试问在线段DE和BC上是否分别存在点M和F,使得平面OMF∥平面ACD?若存在,确定点M和点F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,正实数a,b,c是公差为正数的等差数列,且满足.若实数d是方程的一个解,那么下列三个判断:①d<a;②d<b;③d<c中有可能成立的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.(12分)
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的三边长是公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是(

A. 18 B. 15 C. 21 D. 24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若样本平均数是4,方差是2,则另一样本的平均数和方差分别为( )

A. 12,2 B. 14,6 C. 12,8 D. 14,18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示.

(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);

(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?

合格

优秀

合计

男生

18

女生

25

合计

100

附:

0.050

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论错误的是 ( )

A. 若“”与“”均为假命题,则假.

B. 命题“存在”的否定是“对任意

C. ”是“”的充分不必要条件.

D. “若则a<b”的逆命题为真.

查看答案和解析>>

同步练习册答案