精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的单调区间;
(2)若函数处取得极值,对恒成立,求实数的取值范围;
(3)当时,求证:

(1)上递减,在上递增;(2);(3)证明详见解析.

解析试题分析:(1)先求函数的导函数,然后分别求解不等式,即可求出函数的单调增、减区间,注意函数的定义域;(2)先根据函数在取得极值,得到,进而求出的值,进而采用分离参数法得到,该不等式恒成立,进一步转化为,利用导数与最值的关系求出函数的最小值即可;(3)先将要证明的问题进行等价转化,进而构造函数,转化为证明该函数在单调递增,根据函数的单调性与导数的关系进行证明即可.
试题解析:(1)当时,

上递减,在上递增
(2)∵函数处取得极值,∴

,可得上递减,在上递增
,即 
(3)证明:
,则只要证明上单调递增
又∵
显然函数上单调递增
,即
上单调递增,即
∴当时,有
考点:1.函数的单调性与导数;2.函数的极值与导数;3.函数的最值与导数;4.分离参数法;5.构造函数法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,若在区间上的最小值为,其中是自然对数的底数,
求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极值,求的单调递增区间;
(2)若在区间内有极大值和极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数上的值域;
(2)若,对恒成立,
求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数的一个极值点.
(1)求的关系式(用表示),并求的单调区间;
(2)设在区间[0,4]上是增函数.若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的极值(用含的式子表示);
(2)若的图象与轴有3个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,为自然对数的底数.
(I)求函数的极值;
(2)若方程有两个不同的实数根,试求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中的导函数.

(1)求的表达式;
(2)若恒成立,求实数的取值范围;
(3)设,比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案