精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,离心率为,且在椭圆上运动,当点恰好在直线l:上时,的面积为.

1)求椭圆的方程;

2)作与平行的直线,与椭圆交于两点,且线段的中点为,若的斜率分别为,求的取值范围.

【答案】1 2.

【解析】

1)根据点在椭圆上运动,当点恰好在直线l:上时,的面积为,直线与椭圆方程联立,解得点的坐标,则有,再由求解.

2)设直线的方程为.可得,由韦达定理,求得点M的横纵坐标,建立模型,由,得到,或.然后用函数法求范围.

1)由可得.

根据对称性,不妨设点在第一象限,则点的坐标为

设椭圆的焦距为2c,由条件可得

由椭圆的离心率可得

所以

所以

,解得,故.

故椭圆的方程为

2)设直线的方程为.

可得

,即

所以,,或.

.

.

.

时,,且上的取值范围相同,

故只需求上的取值范围.

上随的增大而增大.

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点,点为抛物线上的动点.

1)若的最小值为,求实数的值;

2)设线段的中点为,其中为坐标原点,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国庆节假期期间,某商场为掌握假期期间顾客购买商品人次,统计了1017:00-2300这一时间段内顾客0这一时间段内顾客购买商品人次,统计发现这一时间段内顾客购买商品共5000人次顾客购买商品时刻的频率分布直方图如下图所示,其中时间段7:00 11:0011:00 15:0015:00 ~19:0019:00~23:00,依次记作[711),[1115),[1519),[1923].

1)求该天顾客购买商品时刻的中位数t与平均值(同一组中的数据用该组区间的中点值代表);

2)现从101日在该商场购买商品的顾客中随机抽取100名顾客,经统计有男顾客 40人,其中10人购物时刻在[1923](夜晚),女顾客60人,其中50人购物时刻在[719)(白天),根据提供的统计数据,完成下面的2×2列联表,并判断是否有90%的把握认为男顾客更喜欢在夜晚购物”?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,底面正方形的对角线交于点

1)求直线与平面所成角的正弦值;

2)求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.

1)在93颗新发现的脉冲星中,自转周期在210秒的大约有多少颗?

2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角中,通过以直线为轴顺时针旋转得到(.为斜边上一点.为线段上一点,且.

1)证明:平面

2)当直线与平面所成的角取最大值时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的优美函数,下列说法错误的是(

A.对于任意一个圆,其优美函数有无数个

B.可以是某个圆的优美函数

C.正弦函数可以同时是无数个圆的优美函数

D.函数优美函数的充要条件为函数的图象是中心对称图形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

(Ⅰ) 设(其中的导数),求的极小值;

(Ⅱ) 若对,都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案