精英家教网 > 高中数学 > 题目详情
如图所示,已知是椭圆 的左、右焦点,点在椭圆上,线段与圆相切于点,且点为线段的中点,则椭圆的离心率为     .

试题分析:解:记线段PF1的中点为M,椭圆中心为O,连接OM,PF2则有|PF2|=2|OM|,
 
故答案为
点评:本题考查椭圆的离心率,解题时要认真审题,合理地进行等价转化,充分利用椭圆的性质进行解题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

与直线x+2y+3=0垂直,且与抛物线y = x2 相切的直线方程是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率,则k的取值范围是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距为2,则的值为(    )
A.3B.C.3或5D.3或

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设抛物线方程为为直线上任意一点,过引抛物线的切线,切点分别为

(1)求证:三点的横坐标成等差数列;
(2)已知当点的坐标为时,.求此时抛物线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于点C,连接BC、AC。

(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

斜率为的直线与双曲线(a>0,b>0)恒有两个公共点,则双曲线离心率的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是(   )。
A.直线B.椭圆C.抛物线D.双曲线

查看答案和解析>>

同步练习册答案