精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)判断函数的单调性,并说明理由

(2)若对任意的恒成立,求a的取值范围

【答案】(1)见解析;(2)

【解析】

(1)根据题意,直接把函数代入然后根据定义法判断该函数的单调性即可.

(2)根据题意,对函数的双变量问题一步步转化对任意的恒成立等价于恒成立,然后化简得,可令,即求恒成立,最终转化为然后根据二次函数的性质进行讨论,即可求出a的取值范围.

1) 的定义域为.

因为.

上单调递增.

上单调递增,

所以上单调递增.

(2)因为,所以上的最大值为.

对任意的恒成立等价于恒成立,

.

时,即时,

,即,无解;

时,即时,

,即,又,所以.

时,即时,

,即

,此时无解.

综上,a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

(1)确定的解析式;

2)判断并证明上的单调性;

3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(0,4),且在两坐标轴上的截距之和为1.

(Ⅰ)求直线l的方程;

(Ⅱ)若直线l1与直线l平行,且l1l间的距离为2,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在图中的算法中,如果输入A=2016,B=98,则输出的结果是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的高为2,的中点,的中点

(1)证明:平面

(2)若三棱锥的体积为,求该正三棱柱的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的焦点为,离心率为

(1)求椭圆方程;

2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且 成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,左、右焦点分别为F1F2,且|F1F2|=2,点1 在椭圆C

1求椭圆C的方程;

2F1的直线l与椭圆C相交于AB两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为-
(1)求证:动点P恒在一个定椭圆C上运动;
(2)过 的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.

查看答案和解析>>

同步练习册答案