精英家教网 > 高中数学 > 题目详情
19.在极坐标系中,已知A(2,$\frac{π}{6}$),B(4,$\frac{π}{3}$),则△AOB的面积S=2.

分析 根据点的极坐标可得 OA=2,OB=4,∠AOB=$\frac{π}{6}$,利用三角形的面积公式,即可求出△AOB的面积.

解答 解:在极坐标系下,点A(2,$\frac{π}{6}$),B(4,$\frac{π}{3}$),O是极点,
∴OA=2,OB=4,∠AOB=$\frac{π}{6}$,
则△AOB的面积等于$\frac{1}{2}$×2×4×$\frac{1}{2}$=2,
故答案为:2.

点评 本题主要考查点的极坐标的定义,三角形的面积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知正三棱锥A-BCD的外接球半径R=$\frac{\sqrt{3}}{2}$,P,Q分别是AB,BC上的点,且满足$\frac{AP}{PB}$=$\frac{CQ}{QB}$=5,DP⊥PQ,则该正三棱锥的高为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列中{an}中,a1=2,a4=9,{bn}是等比数列,且bn=an-1
(1)求{an}的通项公式;
(2)求{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+$\frac{1}{2}$x2-4x.
(1)求f′(x);
(2)求函数在区间[-2,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x2+ax+b(a,b∈R),记集合A={x∈R|f(x)≤0},B={x∈R|f(f(x)+1)≤0},若A=B≠∅,则实数a的取值范围为(  )
A.[-4,4]B.[-2,2]C.[-2,0]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知两圆相交于A(-1,3),B(-6,m)两点,且这两圆的圆心均在直线x-y+c=0上,则m+2c的值为(  )
A.-1B.26C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log32,b=ln2,c=5-0.5,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点,过坐标原点的直线依次与双曲线C的左、右支交于点P,Q,若|PQ|=2|QF|,∠PQF=60°,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$1+\sqrt{3}$C.$2+\sqrt{3}$D.$4+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|lnx|,g(x)=k(x-1)(k∈R).
(1)若两个实数a,b满足0<a<b,且f(a)=f(b),求4a-b的取值范围;
(2)证明:当k<1时,存在x0>1,使得对任意的x∈(1,x0),恒有f(x)>g(x);
(3)已知0<a<b,证明:存在x0∈(a,b),使得$\frac{lnb-lna}{b-a}=\frac{1}{x_0}$.

查看答案和解析>>

同步练习册答案