精英家教网 > 高中数学 > 题目详情

已知点P(x,y)对应的复数z满足, 则点Q(x+y,xy)的轨迹是 (      ).   

       A. 圆     B. 抛物线的一部分       C. 椭圆        D. 双曲线的一部

B


解析:

, 则

, , 轨迹为抛物线的一部分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(x,y)为椭圆
x2
4
+y2=1
上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为
2
;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;对定点A(
3
2
1
2
)
,则|
PA
|+|
PF2
|
的取值范围为[4-
7
,4+
7
.其中正确结论的番号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足f(x)≤g(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=lnx,g(x)=1-
1
x

(1)试探求f(x)与g(x)是否存在“左同旁切线”,若存在,请求出左同旁切线方程;若不存在,请说明理由.
(2)设P(x1,f(x1)),Q(x2,f(x2))是函数f(x)图象上任意两点,0<x1<x2,且存在实数x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,证明:x1<x3<x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点P(x,y)为椭圆数学公式上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为数学公式;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有数学公式;对定点数学公式,则数学公式的取值范围为数学公式.其中正确结论的番号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(x,y)为椭圆
x2
4
+y2=1
上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为
2
;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;对定点A(
3
2
1
2
)
,则|
PA
|+|
PF2
|
的取值范围为[4-
7
,4+
7
.其中正确结论的番号是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省镇江市扬中二中高三(上)期末数学模拟试卷(解析版) 题型:解答题

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知点P(
x,y)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP,NP分别交x轴于点E(xE,0)和点F(xF,0).
(Ⅰ)试用x,y,m,n的代数式分别表示xE和xF
(Ⅱ)已知“若点P(x,y)是圆C:x2+y2=R2上的任意一点,MN是垂直于x轴的垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),则”.类比这一结论,我们猜想:“若曲线C的方程为(如图),则xE•xF也是与点M、N、P位置无关的定值”,请你对该猜想给出证明.

查看答案和解析>>

同步练习册答案