【题目】如图,在三棱锥中,平面,已知,点分别为的中点.
(1)求证:;
(2)若F在线段上,满足平面,求的值;
(3)若三角形是正三角形,边长为2,求二面角的正切值.
【答案】(1)见解析;(2);(3).
【解析】
(1)等腰中,证出中线.由平面,得,再利用线面垂直判定定理,即可证出平面,则可得出;
(2)连结,交于点,连结、.利用线面平行的性质定理,证出.而为的中位线,证出,利用相似三角形的性质和平行线的性质,即可算出的值.
(3)过点作交的中点,证出是等腰三角形,得出,则二面角为,可求出,即为答案.
(1)因为平面,平面,所以,
又因为,是的中点,所以,
而、是平面内的相交直线,所以平面,
而平面,所以.
(2)连结,交于点,连结、
因为平面,平面,平面平面,
所以,
已知、分别是、的中点,则为的中位线,
因此,,可得,
所以,即的值为.
(3)因为是正三角形,边长为2,则,
过点作交的中点,,
又因为平面,所以,
则且,
所以,即是等腰三角形,
连接,有,
所以二面角为,
又因为,所以在中,
,
所以二面角的正切值为.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AA1ABAC2,AB⊥AC,M是棱BC的中点点P在线段A1B上.
(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;
(2)若是的中点,直线与平面所成角的正弦值为,求线段BP的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.
(1)求证:直线恒过定点;
(2)当直线被圆截得的弦长最短时,求直线的方程;
(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,的直角边OA在x轴上,顶点B的坐标为,直线CD交AB于点,交x轴于点.
(1)求直线CD的方程;
(2)动点P在x轴上从点出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求的值域;
(2)若将函数向右平移个单位得到函数,且为奇函数.
①求的最小值;
②当取最小值时,若与函数在y轴右侧的交点横坐标依次为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标中xOy,圆C1:x2+y2=8,圆C2:x2+y2=18,点M(1,0),动点A、B分别在圆C1和圆C2上,满足,则的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是公差为的等差数列,是公比为()的等比数列,记.
(1)令,求证:数列为等比数列;
(2)若,,数列前2项和为14,前8项和为857,求数列通项公式;
(3)在(2)的条件下,问:数列中是否存在四项、、、成等差数列?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com