精英家教网 > 高中数学 > 题目详情

【题目】在50和350之间所有末位数是1的整数之和是( )

A. 5880 B. 5539 C. 5208 D. 4877

【答案】A

【解析】

50350之间,所有末位数字是1的整数构成一个首项为a1=51,公差为d=10的等差数列,由此能求出在50350之间,所有末位数字是1的整数之和.

50350之间,所有末位数字是1的整数有51,61,71,81,…,341,

构成一个首项为a1=51,公差为d=10的等差数列,

an=51+(n﹣1)×10=10n+41,

an=10n+41=341,解得n=30,

∴在50350之间,所有末位数字是1的整数有30个,

∴在50350之间,所有末位数字是1的整数之和:

S=(51+341)=5880.

故答案为:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间(以月为单位)的关系为,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动,主持人从这两个班分别随机选出20名同学进行当场测试,他们的测试成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分组,分别用频率分布直方图与茎叶图统计如图(单位:分):
高一(2)班20名学生成绩茎叶图:

4

5

5

2

6

4 5 6 8

7

0 5 5 8 8 8 8 9

8

0 0 5 5

9

4 5

(Ⅰ)分别计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(Ⅱ)分别从两个班随机选取1人,设这两人中成绩在[80,90)的人数为X,求X的分布列(频率当作概率使用).
(Ⅲ)运用所学统计知识分析比较两个班学生的古诗词水平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为(
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具所需成本费用为PP=1 000+5xx2而每套售出的价格为Q其中Q(x)=a (abR),

(1)问:玩具厂生产多少套时使得每套所需成本费用最少?

(2)若生产出的玩具能全部售出且当产量为150套时利润最大此时每套价格为30ab的值.(利润=销售收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定实数 t,已知命题 p:函数 有零点;命题 q: x∈[1,+∞) ≤4-1.

(Ⅰ)当 t=1 时,判断命题 q 的真假;

(Ⅱ)若 pq 为假命题,求 t 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年入冬以来,各地雾霾天气频发,频频爆表(是指直径小于或等于2.5微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

69

70

74

78

79

(1)请根据上述数据,在下面给出的坐标系中画出散点图;

(2)试判断是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;

(3)若周六同一时间段的车流量为60万辆,试根据(2)得出的结论,预报该时间段的的浓度(保留整数).

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(
A.设p:f(x)=x3+2x2+mx+1是R上的单调增函数, ,则p是q的必要不充分条件
B.若命题 ,则¬p:?x∈R,x2﹣x+1>0
C.奇函数f(x)定义域为R,且f(x﹣1)=﹣f(x),那么f(8)=0
D.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”

查看答案和解析>>

同步练习册答案