精英家教网 > 高中数学 > 题目详情
18.若正方体的体对角线长是4,则正方体的体积是$\frac{64\sqrt{3}}{9}$.

分析 根据体对角线与边长的关系求出正方体边长,代入体积公式计算.

解答 解:设正方体边长为a,则$\sqrt{{a}^{2}+{a}^{2}+{a}^{2}}$=4,
解得a=$\frac{4\sqrt{3}}{3}$,
∴V=a3=$\frac{64\sqrt{3}}{9}$.

点评 本题考查了正方体得体积计算,找到边长与对角线的关系是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设θ∈(0,$\frac{π}{4}$),则二次曲线$\frac{{x}^{2}}{tanθ}$-tanθ•y2=1的离心率的取值范围为(  )
A.(1,$\sqrt{2}$]B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四面体ABCD中,AD⊥平面ABC,AB⊥BC,E,F分别为AC,BD的中点,AB=AD=2,∠BAC=60°.
(1)求证:CD⊥AF;
(2)求EF与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\underset{lim}{x→∞}$($\frac{2{x}^{2}+1}{x+1}$-ax+b)=2,则b的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个函数中,在(-∞,0)上是增函数的为(  )
A.f(x)=x2+4B.f(x)=3-$\frac{2}{x}$C.f(x)=x2-5x-6D.f(x)=1-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={1,2},B={x|x2+ax+b=0},C={x|cx+1=0},若A=B,则a+b=-1,若C⊆A,则常数c组成的集合为{-1,$\frac{1}{2}$,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.把直径分别为6cm,8cm,10cm的三个铜球熔制成一个较大的铜球,再把球削成一个棱长.最大的正方体,求此正方体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.方程2x2+2x-1=0的两根为x1和x2,则|x1-x2|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案