精英家教网 > 高中数学 > 题目详情
5.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

分析 (1)推导出DE∥AC,从而DE∥A1C1,由此能证明DE∥平面A1C1F.
(2)推导出AA1⊥A1C1,从而A1C1⊥平面AA1B1B,进而DE⊥平面AA1B1B,再由DE⊥A1F,得A1F⊥平面B1DE,由此能证明平面B1DE⊥平面A1C1F.

解答 (本小题满分14分)
证明:(1)∵D,E为中点,
∴DE为△ABC的中位线,∴DE∥AC,
又∵ABC-A1B1C1为棱柱,
∴AC∥A1C1,∴DE∥A1C1
又∵A1C1?平面A1C1F,且DE?A1C1F,
∴DE∥平面A1C1F.…(6分)
(2)∵ABC-A1B1C1为直棱柱,
∴AA1⊥平面A1B1C1,∴AA1⊥A1C1
又∵A1C1⊥A1B1且AA1∩A1B1=A1,AA1,A1B1?平面AA1B1B,
∴A1C1⊥平面AA1B1B,
又A1C1∥AC∥DE,∴DE⊥平面AA1B1B,
又∵A1F?平面AA1B1B,∴DE⊥A1F
又∵A1F⊥B1D,DE∩B1D=D,且DE,B1D?平面B1DE,
∴A1F⊥平面B1DE,
又∵A1F?A1C1F,∴平面B1DE⊥平面A1C1F.…(14分)

点评 本题考查线面平行的证明,考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合M={(x,y)|y=$\sqrt{25-{x}^{2}}$,y≠0},N={(x,y)|y=-x+b},若M∩N≠∅,则实数b的取值范围是(  )
A.(-5,5$\sqrt{2}$]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-5,5]D.[-5$\sqrt{2}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.化简$\sqrt{1-si{n}^{2}α}$的结果为(  )
A.sinαB.-sinαC.±cosαD.-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$的离心率为$e=\frac{1}{2}$,则m的值为(  )
A.$\frac{20}{3}$B.$\frac{15}{4}$或$\frac{20}{3}$C.$\frac{15}{4}$D.$\frac{20}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是任意的非零向量,且相互不平行,则下面四个命题:
①$(\overrightarrow a•\overrightarrow b)\overrightarrow c-(\overrightarrow c•\overrightarrow a)\overrightarrow b=\overrightarrow 0$;
②$|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
③$(\overrightarrow b•\overrightarrow c)\overrightarrow a-(\overrightarrow c•\overrightarrow a)\overrightarrow b$不与$\overrightarrow c$垂直;
④$(3\overrightarrow a+2\overrightarrow b)•(3\overrightarrow a-2\overrightarrow b)=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
其中是真命题的为(  )
A.①③B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)当定义域为[-1,1],试判断f(x)=x4+x3+x2+x-1是否为“局部奇函数”;
(2)若g(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的范围;
(3)已知a>1,对于任意的$b∈[1,\frac{3}{2}]$,函数h(x)=ln(x+1+a)+x2+x-b都是定义域为[-1,1]上的“局部奇函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=e|-lnx|-|x-1|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若f(x)=ex,则$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.eB.2eC.-eD.$\frac{1}{2}e$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+1
(1)求f(a)-f(a+1)
(2)若f(x)=x+3,求x的值.

查看答案和解析>>

同步练习册答案