精英家教网 > 高中数学 > 题目详情
如图,平面EAD⊥平面ABCD,△ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点,EC与平面ABCD成30°角.
(1)求证:EG⊥平面ABCD;
(2)若AD=2,求二面角E-FC-G的度数.
(1)证明:如图所示,∵△ADE是等边三角形,
∴EG⊥AD
又平面EAD平面ABCD且相交于AD,
∴EG⊥平面ABCD(4分)
(2)连接CG,则CG是EC在平面ABCD的射影
∴∠ECG是EC与平面ABCD所成的角,
∴∠ECG=30°
在Rt△ECG中:
∵AD=2,
∴EG=
3

∴CG=3
在Rt△CDG中:
∵DG=1,GC=3,
∴DC=2
2

则AF=BF=
2
,GF=
3
,FC=
6

∴GF2+FC2=GC2
即GF⊥FC
∵GF是EF在平面AC内的射影,
∴EF⊥FC
∴∠EFG是二面角E-FC-G的平面角.
在Rt△EGF中,EG=GF=
3

∴∠EFG=45°
故所求二面角E-FC-G的度数为45°(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDE中,AE⊥平面ABC,BDAE,且AC=AB=BC=BD=2,AE=1,F在CD上(不含C,D两点)
(1)求多面体ABCDE的体积;
(2)若F为CD中点,求证:EF⊥面BCD;
(3)当
DF
FC
的值为多少时,能使AC平面EFB,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体A1C1-ABC中,四边形AA1C1C为平行四边形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线BC1与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥平面ABCD,且PA=AD=2,E、F、H分别是线段PA、PD、AB的中点.
(1)求证:PD⊥平面AHF;
(2)求证:平面PBC平面EFH.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中点,F是A1B的中点,
(1)求证:DF平面ABC;
(2)求证:AF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是
5
17
13
,则P到A点的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EFAB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(Ⅰ)求证:NC平面MFD;
(Ⅱ)若EC=3,求证:ND⊥FC;
(Ⅲ)求四面体NFEC体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥S-ABC中,△ABC是边长为2
3
的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.
(1)证明:AC⊥SB;
(2)求三棱锥B-CMN的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱A1B1C1-ABC的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.
(I)求证:B1C平面AC1M;
(II)求证:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

同步练习册答案