精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(ωx+φ) 的最小正周期为π,
(1)求当f(x)为偶函数时φ的值;
(2)若f(x)的图象过点( ),求f(x)的单调递增区间.

【答案】
(1)解:∵T=π,

∴ω= =2,

∴f(x)=sin(2x+φ),

∴当f(x)=sin(2x+φ)为偶函数时,

φ=kπ+ (k∈Z),又0<φ<

∴φ=


(2)解:∵f( )=sin( +φ)=

又0<φ<

<φ+ <π,

∴φ+ =

解得φ=

∴f(x)=sin(2x+ );

由2kπ﹣ ≤2x+ ≤2kπ+ (k∈Z)得:kπ﹣ ≤x≤kπ+ (k∈Z).

∴f(x)的单调递增区间为[kπ﹣ ,kπ+ ](k∈Z)


【解析】(1)依题意知T=π,ω=2,当f(x)=sin(2x+φ)为偶函数时,φ=kπ+ (k∈Z),又0<φ< ,于是可求得φ的值;(2)由f( )=sin( +φ)= 及0<φ< 可求得φ= ,从而可求得f(x)的单调递增区间.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=﹣ x3+x2+(m2﹣1)x,(x∈R),其中m>0.
(1)当m=1时,曲线y=f(x)在点(1,f(1))处的切线斜率;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)求函数f(x)=sin2x+cosx+1,x∈[﹣ ]的值域.
(2)求函数 的定义域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6},则A∪(UB)=(
A.{2,5}
B.{2,5,7,8}
C.{2,3,5,6,7,8}
D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b﹣a(a,b∈R).
(1)若关于x的不等式f(x)>0的解集为(﹣∞,﹣1)∪(3,+∞),求实数a,b的值;
(2)设a=2,若不等式f(x)>b2﹣3b对任意实数x都成立,求实数b的取值范围;
(3)设b=3,解关于x的不等式组

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是(
A.f(x)=
B.f(x)=x2+1
C.f(x)=x3
D.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设入射光线沿直线y=2x+1射向直线y=x,则被y=x反射后,反射光线所在的直线方程是(
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0

查看答案和解析>>

同步练习册答案