精英家教网 > 高中数学 > 题目详情
数列0,,…的一个通项公式为( )
A.an=(n∈Z*
B.an=(n∈Z*
C.an=(n∈Z*
D.an=(n∈Z*
【答案】分析:通过观察数列可知列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,进而可通过等差数列的通项公式求得答案.
解答:解:观察数列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,
故可得数列的通项公式an=(n∈Z*),
故选C
点评:本题主要考查了求数列的通项公式.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

17、一数列的通项公式为an=30+n-n2
①问-60是否为这个数列中的一项.
②当n分别为何值时,an=0,an>0,an<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象是自原点出发的一条折线,当n≤y≤n+1(n=0,1,2,…)时,该图象是斜率为bn的线段(其中正常数b≠1),设数列|xn|由f(xn)=n(n=1,2,…)定义.
(1)求x1、x2和xn的表达式;
(2)计算
limn→∞
xn

(3)求f(x)的表达式,并写出其定义域;

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
a1   a2   a3
a4   a5   a6   a7
a8   a9   a10  a11  a12

a66=
2
5
.请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
200
 , 
1
20
]
上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义
xn+1=yn-xn
yn+1=yn+xn
(n为正整数)为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换,将之称为点变换,已知P1(0,1),P2(x2,y2),…,Pn+1(xn+1,yn+1)…是经过点变换得到的一列点,并记an为点Pn与Pn+1间的距离,若数列{an}的前n项和为Sn,则Sn
(
2
)
n
-1
2
-1
(
2
)
n
-1
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是公差不为0的等差数列,其前n项和为Sn,且S9=135,a3,a4,a12成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)是否存在正整数m,使
a
2
m
+
a
2
m+2
2am+1
仍为数列{an}中的一项?若存在,求出满足要求的所有正整数m;若不存在,说明理由.

查看答案和解析>>

同步练习册答案